Metamath Proof Explorer


Theorem mplbas2

Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mplbas2.p P = I mPoly R
mplbas2.s S = I mPwSer R
mplbas2.v V = I mVar R
mplbas2.a A = AlgSpan S
mplbas2.i φ I W
mplbas2.r φ R CRing
Assertion mplbas2 φ A ran V = Base P

Proof

Step Hyp Ref Expression
1 mplbas2.p P = I mPoly R
2 mplbas2.s S = I mPwSer R
3 mplbas2.v V = I mVar R
4 mplbas2.a A = AlgSpan S
5 mplbas2.i φ I W
6 mplbas2.r φ R CRing
7 2 5 6 psrassa φ S AssAlg
8 eqid Base P = Base P
9 eqid Base S = Base S
10 1 2 8 9 mplbasss Base P Base S
11 10 a1i φ Base P Base S
12 crngring R CRing R Ring
13 6 12 syl φ R Ring
14 2 3 9 5 13 mvrf φ V : I Base S
15 14 ffnd φ V Fn I
16 5 adantr φ x I I W
17 13 adantr φ x I R Ring
18 simpr φ x I x I
19 1 3 8 16 17 18 mvrcl φ x I V x Base P
20 19 ralrimiva φ x I V x Base P
21 ffnfv V : I Base P V Fn I x I V x Base P
22 15 20 21 sylanbrc φ V : I Base P
23 22 frnd φ ran V Base P
24 4 9 aspss S AssAlg Base P Base S ran V Base P A ran V A Base P
25 7 11 23 24 syl3anc φ A ran V A Base P
26 2 1 8 5 13 mplsubrg φ Base P SubRing S
27 2 1 8 5 13 mpllss φ Base P LSubSp S
28 eqid LSubSp S = LSubSp S
29 4 9 28 aspid S AssAlg Base P SubRing S Base P LSubSp S A Base P = Base P
30 7 26 27 29 syl3anc φ A Base P = Base P
31 25 30 sseqtrd φ A ran V Base P
32 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
33 eqid 0 R = 0 R
34 eqid 1 R = 1 R
35 5 adantr φ x Base P I W
36 eqid P = P
37 13 adantr φ x Base P R Ring
38 simpr φ x Base P x Base P
39 1 32 33 34 35 8 36 37 38 mplcoe1 φ x Base P x = P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
40 eqid 0 P = 0 P
41 1 5 13 mplringd φ P Ring
42 ringabl P Ring P Abel
43 41 42 syl φ P Abel
44 43 adantr φ x Base P P Abel
45 ovex 0 I V
46 45 rabex f 0 I | f -1 Fin V
47 46 a1i φ x Base P f 0 I | f -1 Fin V
48 14 frnd φ ran V Base S
49 4 9 aspsubrg S AssAlg ran V Base S A ran V SubRing S
50 7 48 49 syl2anc φ A ran V SubRing S
51 1 2 8 mplval2 P = S 𝑠 Base P
52 51 subsubrg Base P SubRing S A ran V SubRing P A ran V SubRing S A ran V Base P
53 26 52 syl φ A ran V SubRing P A ran V SubRing S A ran V Base P
54 50 31 53 mpbir2and φ A ran V SubRing P
55 subrgsubg A ran V SubRing P A ran V SubGrp P
56 54 55 syl φ A ran V SubGrp P
57 56 adantr φ x Base P A ran V SubGrp P
58 1 5 13 mpllmodd φ P LMod
59 58 ad2antrr φ x Base P k f 0 I | f -1 Fin P LMod
60 4 9 28 asplss S AssAlg ran V Base S A ran V LSubSp S
61 7 48 60 syl2anc φ A ran V LSubSp S
62 2 5 13 psrlmod φ S LMod
63 eqid LSubSp P = LSubSp P
64 51 28 63 lsslss S LMod Base P LSubSp S A ran V LSubSp P A ran V LSubSp S A ran V Base P
65 62 27 64 syl2anc φ A ran V LSubSp P A ran V LSubSp S A ran V Base P
66 61 31 65 mpbir2and φ A ran V LSubSp P
67 66 ad2antrr φ x Base P k f 0 I | f -1 Fin A ran V LSubSp P
68 eqid Base R = Base R
69 1 68 8 32 38 mplelf φ x Base P x : f 0 I | f -1 Fin Base R
70 69 ffvelcdmda φ x Base P k f 0 I | f -1 Fin x k Base R
71 1 35 37 mplsca φ x Base P R = Scalar P
72 71 adantr φ x Base P k f 0 I | f -1 Fin R = Scalar P
73 72 fveq2d φ x Base P k f 0 I | f -1 Fin Base R = Base Scalar P
74 70 73 eleqtrd φ x Base P k f 0 I | f -1 Fin x k Base Scalar P
75 5 ad2antrr φ x Base P k f 0 I | f -1 Fin I W
76 eqid mulGrp P = mulGrp P
77 eqid mulGrp P = mulGrp P
78 6 ad2antrr φ x Base P k f 0 I | f -1 Fin R CRing
79 simpr φ x Base P k f 0 I | f -1 Fin k f 0 I | f -1 Fin
80 1 32 33 34 75 76 77 3 78 79 mplcoe2 φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R = mulGrp P z I k z mulGrp P V z
81 eqid 1 P = 1 P
82 76 81 ringidval 1 P = 0 mulGrp P
83 1 mplcrng I W R CRing P CRing
84 5 6 83 syl2anc φ P CRing
85 76 crngmgp P CRing mulGrp P CMnd
86 84 85 syl φ mulGrp P CMnd
87 86 ad2antrr φ x Base P k f 0 I | f -1 Fin mulGrp P CMnd
88 54 ad2antrr φ x Base P k f 0 I | f -1 Fin A ran V SubRing P
89 76 subrgsubm A ran V SubRing P A ran V SubMnd mulGrp P
90 88 89 syl φ x Base P k f 0 I | f -1 Fin A ran V SubMnd mulGrp P
91 simplll φ x Base P k f 0 I | f -1 Fin z I φ
92 32 psrbag I W k f 0 I | f -1 Fin k : I 0 k -1 Fin
93 35 92 syl φ x Base P k f 0 I | f -1 Fin k : I 0 k -1 Fin
94 93 biimpa φ x Base P k f 0 I | f -1 Fin k : I 0 k -1 Fin
95 94 simpld φ x Base P k f 0 I | f -1 Fin k : I 0
96 95 ffvelcdmda φ x Base P k f 0 I | f -1 Fin z I k z 0
97 4 9 aspssid S AssAlg ran V Base S ran V A ran V
98 7 48 97 syl2anc φ ran V A ran V
99 98 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I ran V A ran V
100 15 ad2antrr φ x Base P k f 0 I | f -1 Fin V Fn I
101 fnfvelrn V Fn I z I V z ran V
102 100 101 sylan φ x Base P k f 0 I | f -1 Fin z I V z ran V
103 99 102 sseldd φ x Base P k f 0 I | f -1 Fin z I V z A ran V
104 76 8 mgpbas Base P = Base mulGrp P
105 eqid P = P
106 76 105 mgpplusg P = + mulGrp P
107 105 subrgmcl A ran V SubRing P u A ran V v A ran V u P v A ran V
108 54 107 syl3an1 φ u A ran V v A ran V u P v A ran V
109 81 subrg1cl A ran V SubRing P 1 P A ran V
110 54 109 syl φ 1 P A ran V
111 104 77 106 86 31 108 82 110 mulgnn0subcl φ k z 0 V z A ran V k z mulGrp P V z A ran V
112 91 96 103 111 syl3anc φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z A ran V
113 112 fmpttd φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z : I A ran V
114 5 mptexd φ z I k z mulGrp P V z V
115 114 ad2antrr φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z V
116 funmpt Fun z I k z mulGrp P V z
117 116 a1i φ x Base P k f 0 I | f -1 Fin Fun z I k z mulGrp P V z
118 fvexd φ x Base P k f 0 I | f -1 Fin 1 P V
119 94 simprd φ x Base P k f 0 I | f -1 Fin k -1 Fin
120 elrabi k f 0 I | f -1 Fin k 0 I
121 elmapi k 0 I k : I 0
122 121 adantl φ x Base P k 0 I k : I 0
123 5 ad2antrr φ x Base P k 0 I I W
124 fcdmnn0supp I W k : I 0 k supp 0 = k -1
125 123 122 124 syl2anc φ x Base P k 0 I k supp 0 = k -1
126 eqimss k supp 0 = k -1 k supp 0 k -1
127 125 126 syl φ x Base P k 0 I k supp 0 k -1
128 c0ex 0 V
129 128 a1i φ x Base P k 0 I 0 V
130 122 127 123 129 suppssr φ x Base P k 0 I z I k -1 k z = 0
131 120 130 sylanl2 φ x Base P k f 0 I | f -1 Fin z I k -1 k z = 0
132 131 oveq1d φ x Base P k f 0 I | f -1 Fin z I k -1 k z mulGrp P V z = 0 mulGrp P V z
133 5 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I k -1 I W
134 13 ad3antrrr φ x Base P k f 0 I | f -1 Fin z I k -1 R Ring
135 eldifi z I k -1 z I
136 135 adantl φ x Base P k f 0 I | f -1 Fin z I k -1 z I
137 1 3 8 133 134 136 mvrcl φ x Base P k f 0 I | f -1 Fin z I k -1 V z Base P
138 104 82 77 mulg0 V z Base P 0 mulGrp P V z = 1 P
139 137 138 syl φ x Base P k f 0 I | f -1 Fin z I k -1 0 mulGrp P V z = 1 P
140 132 139 eqtrd φ x Base P k f 0 I | f -1 Fin z I k -1 k z mulGrp P V z = 1 P
141 140 75 suppss2 φ x Base P k f 0 I | f -1 Fin z I k z mulGrp P V z supp 1 P k -1
142 suppssfifsupp z I k z mulGrp P V z V Fun z I k z mulGrp P V z 1 P V k -1 Fin z I k z mulGrp P V z supp 1 P k -1 finSupp 1 P z I k z mulGrp P V z
143 115 117 118 119 141 142 syl32anc φ x Base P k f 0 I | f -1 Fin finSupp 1 P z I k z mulGrp P V z
144 82 87 75 90 113 143 gsumsubmcl φ x Base P k f 0 I | f -1 Fin mulGrp P z I k z mulGrp P V z A ran V
145 80 144 eqeltrd φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
146 eqid Scalar P = Scalar P
147 eqid Base Scalar P = Base Scalar P
148 146 36 147 63 lssvscl P LMod A ran V LSubSp P x k Base Scalar P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
149 59 67 74 145 148 syl22anc φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
150 149 fmpttd φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R : f 0 I | f -1 Fin A ran V
151 45 mptrabex k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V
152 funmpt Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
153 fvex 0 P V
154 151 152 153 3pm3.2i k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V
155 154 a1i φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V
156 1 2 9 33 8 mplelbas x Base P x Base S finSupp 0 R x
157 156 simprbi x Base P finSupp 0 R x
158 157 adantl φ x Base P finSupp 0 R x
159 158 fsuppimpd φ x Base P x supp 0 R Fin
160 ssidd φ x Base P x supp 0 R x supp 0 R
161 fvexd φ x Base P 0 R V
162 69 160 47 161 suppssr φ x Base P k f 0 I | f -1 Fin supp 0 R x x k = 0 R
163 71 fveq2d φ x Base P 0 R = 0 Scalar P
164 163 adantr φ x Base P k f 0 I | f -1 Fin supp 0 R x 0 R = 0 Scalar P
165 162 164 eqtrd φ x Base P k f 0 I | f -1 Fin supp 0 R x x k = 0 Scalar P
166 165 oveq1d φ x Base P k f 0 I | f -1 Fin supp 0 R x x k P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R
167 eldifi k f 0 I | f -1 Fin supp 0 R x k f 0 I | f -1 Fin
168 13 ad2antrr φ x Base P k f 0 I | f -1 Fin R Ring
169 1 8 33 34 32 75 168 79 mplmon φ x Base P k f 0 I | f -1 Fin y f 0 I | f -1 Fin if y = k 1 R 0 R Base P
170 eqid 0 Scalar P = 0 Scalar P
171 8 146 36 170 40 lmod0vs P LMod y f 0 I | f -1 Fin if y = k 1 R 0 R Base P 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
172 59 169 171 syl2anc φ x Base P k f 0 I | f -1 Fin 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
173 167 172 sylan2 φ x Base P k f 0 I | f -1 Fin supp 0 R x 0 Scalar P P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
174 166 173 eqtrd φ x Base P k f 0 I | f -1 Fin supp 0 R x x k P y f 0 I | f -1 Fin if y = k 1 R 0 R = 0 P
175 174 47 suppss2 φ x Base P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R supp 0 P x supp 0 R
176 suppssfifsupp k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R V Fun k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R 0 P V x supp 0 R Fin k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R supp 0 P x supp 0 R finSupp 0 P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
177 155 159 175 176 syl12anc φ x Base P finSupp 0 P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R
178 40 44 47 57 150 177 gsumsubgcl φ x Base P P k f 0 I | f -1 Fin x k P y f 0 I | f -1 Fin if y = k 1 R 0 R A ran V
179 39 178 eqeltrd φ x Base P x A ran V
180 31 179 eqelssd φ A ran V = Base P