Step |
Hyp |
Ref |
Expression |
1 |
|
mplbas2.p |
|
2 |
|
mplbas2.s |
|
3 |
|
mplbas2.v |
|
4 |
|
mplbas2.a |
|
5 |
|
mplbas2.i |
|
6 |
|
mplbas2.r |
|
7 |
2 5 6
|
psrassa |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1 2 8 9
|
mplbasss |
|
11 |
10
|
a1i |
|
12 |
|
crngring |
|
13 |
6 12
|
syl |
|
14 |
2 3 9 5 13
|
mvrf |
|
15 |
14
|
ffnd |
|
16 |
5
|
adantr |
|
17 |
13
|
adantr |
|
18 |
|
simpr |
|
19 |
1 3 8 16 17 18
|
mvrcl |
|
20 |
19
|
ralrimiva |
|
21 |
|
ffnfv |
|
22 |
15 20 21
|
sylanbrc |
|
23 |
22
|
frnd |
|
24 |
4 9
|
aspss |
|
25 |
7 11 23 24
|
syl3anc |
|
26 |
2 1 8 5 13
|
mplsubrg |
|
27 |
2 1 8 5 13
|
mpllss |
|
28 |
|
eqid |
|
29 |
4 9 28
|
aspid |
|
30 |
7 26 27 29
|
syl3anc |
|
31 |
25 30
|
sseqtrd |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
5
|
adantr |
|
36 |
|
eqid |
|
37 |
13
|
adantr |
|
38 |
|
simpr |
|
39 |
1 32 33 34 35 8 36 37 38
|
mplcoe1 |
|
40 |
|
eqid |
|
41 |
1
|
mplring |
|
42 |
5 13 41
|
syl2anc |
|
43 |
|
ringabl |
|
44 |
42 43
|
syl |
|
45 |
44
|
adantr |
|
46 |
|
ovex |
|
47 |
46
|
rabex |
|
48 |
47
|
a1i |
|
49 |
14
|
frnd |
|
50 |
4 9
|
aspsubrg |
|
51 |
7 49 50
|
syl2anc |
|
52 |
1 2 8
|
mplval2 |
|
53 |
52
|
subsubrg |
|
54 |
26 53
|
syl |
|
55 |
51 31 54
|
mpbir2and |
|
56 |
|
subrgsubg |
|
57 |
55 56
|
syl |
|
58 |
57
|
adantr |
|
59 |
1
|
mpllmod |
|
60 |
5 13 59
|
syl2anc |
|
61 |
60
|
ad2antrr |
|
62 |
4 9 28
|
asplss |
|
63 |
7 49 62
|
syl2anc |
|
64 |
2 5 13
|
psrlmod |
|
65 |
|
eqid |
|
66 |
52 28 65
|
lsslss |
|
67 |
64 27 66
|
syl2anc |
|
68 |
63 31 67
|
mpbir2and |
|
69 |
68
|
ad2antrr |
|
70 |
|
eqid |
|
71 |
1 70 8 32 38
|
mplelf |
|
72 |
71
|
ffvelrnda |
|
73 |
1 35 37
|
mplsca |
|
74 |
73
|
adantr |
|
75 |
74
|
fveq2d |
|
76 |
72 75
|
eleqtrd |
|
77 |
5
|
ad2antrr |
|
78 |
|
eqid |
|
79 |
|
eqid |
|
80 |
6
|
ad2antrr |
|
81 |
|
simpr |
|
82 |
1 32 33 34 77 78 79 3 80 81
|
mplcoe2 |
|
83 |
|
eqid |
|
84 |
78 83
|
ringidval |
|
85 |
1
|
mplcrng |
|
86 |
5 6 85
|
syl2anc |
|
87 |
78
|
crngmgp |
|
88 |
86 87
|
syl |
|
89 |
88
|
ad2antrr |
|
90 |
55
|
ad2antrr |
|
91 |
78
|
subrgsubm |
|
92 |
90 91
|
syl |
|
93 |
|
simplll |
|
94 |
32
|
psrbag |
|
95 |
35 94
|
syl |
|
96 |
95
|
biimpa |
|
97 |
96
|
simpld |
|
98 |
97
|
ffvelrnda |
|
99 |
4 9
|
aspssid |
|
100 |
7 49 99
|
syl2anc |
|
101 |
100
|
ad3antrrr |
|
102 |
15
|
ad2antrr |
|
103 |
|
fnfvelrn |
|
104 |
102 103
|
sylan |
|
105 |
101 104
|
sseldd |
|
106 |
78 8
|
mgpbas |
|
107 |
|
eqid |
|
108 |
78 107
|
mgpplusg |
|
109 |
107
|
subrgmcl |
|
110 |
55 109
|
syl3an1 |
|
111 |
83
|
subrg1cl |
|
112 |
55 111
|
syl |
|
113 |
106 79 108 88 31 110 84 112
|
mulgnn0subcl |
|
114 |
93 98 105 113
|
syl3anc |
|
115 |
114
|
fmpttd |
|
116 |
5
|
mptexd |
|
117 |
116
|
ad2antrr |
|
118 |
|
funmpt |
|
119 |
118
|
a1i |
|
120 |
|
fvexd |
|
121 |
96
|
simprd |
|
122 |
|
elrabi |
|
123 |
|
elmapi |
|
124 |
123
|
adantl |
|
125 |
5
|
ad2antrr |
|
126 |
|
frnnn0supp |
|
127 |
125 124 126
|
syl2anc |
|
128 |
|
eqimss |
|
129 |
127 128
|
syl |
|
130 |
|
c0ex |
|
131 |
130
|
a1i |
|
132 |
124 129 125 131
|
suppssr |
|
133 |
122 132
|
sylanl2 |
|
134 |
133
|
oveq1d |
|
135 |
5
|
ad3antrrr |
|
136 |
13
|
ad3antrrr |
|
137 |
|
eldifi |
|
138 |
137
|
adantl |
|
139 |
1 3 8 135 136 138
|
mvrcl |
|
140 |
106 84 79
|
mulg0 |
|
141 |
139 140
|
syl |
|
142 |
134 141
|
eqtrd |
|
143 |
142 77
|
suppss2 |
|
144 |
|
suppssfifsupp |
|
145 |
117 119 120 121 143 144
|
syl32anc |
|
146 |
84 89 77 92 115 145
|
gsumsubmcl |
|
147 |
82 146
|
eqeltrd |
|
148 |
|
eqid |
|
149 |
|
eqid |
|
150 |
148 36 149 65
|
lssvscl |
|
151 |
61 69 76 147 150
|
syl22anc |
|
152 |
151
|
fmpttd |
|
153 |
46
|
mptrabex |
|
154 |
|
funmpt |
|
155 |
|
fvex |
|
156 |
153 154 155
|
3pm3.2i |
|
157 |
156
|
a1i |
|
158 |
1 2 9 33 8
|
mplelbas |
|
159 |
158
|
simprbi |
|
160 |
159
|
adantl |
|
161 |
160
|
fsuppimpd |
|
162 |
|
ssidd |
|
163 |
|
fvexd |
|
164 |
71 162 48 163
|
suppssr |
|
165 |
73
|
fveq2d |
|
166 |
165
|
adantr |
|
167 |
164 166
|
eqtrd |
|
168 |
167
|
oveq1d |
|
169 |
|
eldifi |
|
170 |
13
|
ad2antrr |
|
171 |
1 8 33 34 32 77 170 81
|
mplmon |
|
172 |
|
eqid |
|
173 |
8 148 36 172 40
|
lmod0vs |
|
174 |
61 171 173
|
syl2anc |
|
175 |
169 174
|
sylan2 |
|
176 |
168 175
|
eqtrd |
|
177 |
176 48
|
suppss2 |
|
178 |
|
suppssfifsupp |
|
179 |
157 161 177 178
|
syl12anc |
|
180 |
40 45 48 58 152 179
|
gsumsubgcl |
|
181 |
39 180
|
eqeltrd |
|
182 |
31 181
|
eqelssd |
|