Metamath Proof Explorer


Theorem mplbasss

Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p P = I mPoly R
mplval2.s S = I mPwSer R
mplval2.u U = Base P
mplbasss.b B = Base S
Assertion mplbasss U B

Proof

Step Hyp Ref Expression
1 mplval2.p P = I mPoly R
2 mplval2.s S = I mPwSer R
3 mplval2.u U = Base P
4 mplbasss.b B = Base S
5 eqid 0 R = 0 R
6 1 2 4 5 3 mplbas U = f B | finSupp 0 R f
7 6 ssrab3 U B