Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplbasss
Metamath Proof Explorer
Description: The set of polynomials is a subset of the set of power series.
(Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario
Carneiro , 2-Oct-2015)
Ref
Expression
Hypotheses
mplval2.p
⊢ P = I mPoly R
mplval2.s
⊢ S = I mPwSer R
mplval2.u
⊢ U = Base P
mplbasss.b
⊢ B = Base S
Assertion
mplbasss
⊢ U ⊆ B
Proof
Step
Hyp
Ref
Expression
1
mplval2.p
⊢ P = I mPoly R
2
mplval2.s
⊢ S = I mPwSer R
3
mplval2.u
⊢ U = Base P
4
mplbasss.b
⊢ B = Base S
5
eqid
⊢ 0 R = 0 R
6
1 2 4 5 3
mplbas
⊢ U = f ∈ B | finSupp 0 R ⁡ f
7
6
ssrab3
⊢ U ⊆ B