Metamath Proof Explorer


Theorem mplcoe3

Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 18-Jul-2019)

Ref Expression
Hypotheses mplcoe1.p P = I mPoly R
mplcoe1.d D = f 0 I | f -1 Fin
mplcoe1.z 0 ˙ = 0 R
mplcoe1.o 1 ˙ = 1 R
mplcoe1.i φ I W
mplcoe2.g G = mulGrp P
mplcoe2.m × ˙ = G
mplcoe2.v V = I mVar R
mplcoe3.r φ R Ring
mplcoe3.x φ X I
mplcoe3.n φ N 0
Assertion mplcoe3 φ y D if y = k I if k = X N 0 1 ˙ 0 ˙ = N × ˙ V X

Proof

Step Hyp Ref Expression
1 mplcoe1.p P = I mPoly R
2 mplcoe1.d D = f 0 I | f -1 Fin
3 mplcoe1.z 0 ˙ = 0 R
4 mplcoe1.o 1 ˙ = 1 R
5 mplcoe1.i φ I W
6 mplcoe2.g G = mulGrp P
7 mplcoe2.m × ˙ = G
8 mplcoe2.v V = I mVar R
9 mplcoe3.r φ R Ring
10 mplcoe3.x φ X I
11 mplcoe3.n φ N 0
12 ifeq1 x = 0 if k = X x 0 = if k = X 0 0
13 ifid if k = X 0 0 = 0
14 12 13 syl6eq x = 0 if k = X x 0 = 0
15 14 mpteq2dv x = 0 k I if k = X x 0 = k I 0
16 fconstmpt I × 0 = k I 0
17 15 16 syl6eqr x = 0 k I if k = X x 0 = I × 0
18 17 eqeq2d x = 0 y = k I if k = X x 0 y = I × 0
19 18 ifbid x = 0 if y = k I if k = X x 0 1 ˙ 0 ˙ = if y = I × 0 1 ˙ 0 ˙
20 19 mpteq2dv x = 0 y D if y = k I if k = X x 0 1 ˙ 0 ˙ = y D if y = I × 0 1 ˙ 0 ˙
21 oveq1 x = 0 x × ˙ V X = 0 × ˙ V X
22 20 21 eqeq12d x = 0 y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X y D if y = I × 0 1 ˙ 0 ˙ = 0 × ˙ V X
23 22 imbi2d x = 0 φ y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X φ y D if y = I × 0 1 ˙ 0 ˙ = 0 × ˙ V X
24 ifeq1 x = n if k = X x 0 = if k = X n 0
25 24 mpteq2dv x = n k I if k = X x 0 = k I if k = X n 0
26 25 eqeq2d x = n y = k I if k = X x 0 y = k I if k = X n 0
27 26 ifbid x = n if y = k I if k = X x 0 1 ˙ 0 ˙ = if y = k I if k = X n 0 1 ˙ 0 ˙
28 27 mpteq2dv x = n y D if y = k I if k = X x 0 1 ˙ 0 ˙ = y D if y = k I if k = X n 0 1 ˙ 0 ˙
29 oveq1 x = n x × ˙ V X = n × ˙ V X
30 28 29 eqeq12d x = n y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X
31 30 imbi2d x = n φ y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X φ y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X
32 ifeq1 x = n + 1 if k = X x 0 = if k = X n + 1 0
33 32 mpteq2dv x = n + 1 k I if k = X x 0 = k I if k = X n + 1 0
34 33 eqeq2d x = n + 1 y = k I if k = X x 0 y = k I if k = X n + 1 0
35 34 ifbid x = n + 1 if y = k I if k = X x 0 1 ˙ 0 ˙ = if y = k I if k = X n + 1 0 1 ˙ 0 ˙
36 35 mpteq2dv x = n + 1 y D if y = k I if k = X x 0 1 ˙ 0 ˙ = y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙
37 oveq1 x = n + 1 x × ˙ V X = n + 1 × ˙ V X
38 36 37 eqeq12d x = n + 1 y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X
39 38 imbi2d x = n + 1 φ y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X φ y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X
40 ifeq1 x = N if k = X x 0 = if k = X N 0
41 40 mpteq2dv x = N k I if k = X x 0 = k I if k = X N 0
42 41 eqeq2d x = N y = k I if k = X x 0 y = k I if k = X N 0
43 42 ifbid x = N if y = k I if k = X x 0 1 ˙ 0 ˙ = if y = k I if k = X N 0 1 ˙ 0 ˙
44 43 mpteq2dv x = N y D if y = k I if k = X x 0 1 ˙ 0 ˙ = y D if y = k I if k = X N 0 1 ˙ 0 ˙
45 oveq1 x = N x × ˙ V X = N × ˙ V X
46 44 45 eqeq12d x = N y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X y D if y = k I if k = X N 0 1 ˙ 0 ˙ = N × ˙ V X
47 46 imbi2d x = N φ y D if y = k I if k = X x 0 1 ˙ 0 ˙ = x × ˙ V X φ y D if y = k I if k = X N 0 1 ˙ 0 ˙ = N × ˙ V X
48 eqid Base P = Base P
49 1 8 48 5 9 10 mvrcl φ V X Base P
50 6 48 mgpbas Base P = Base G
51 eqid 1 P = 1 P
52 6 51 ringidval 1 P = 0 G
53 50 52 7 mulg0 V X Base P 0 × ˙ V X = 1 P
54 49 53 syl φ 0 × ˙ V X = 1 P
55 1 2 3 4 51 5 9 mpl1 φ 1 P = y D if y = I × 0 1 ˙ 0 ˙
56 54 55 eqtr2d φ y D if y = I × 0 1 ˙ 0 ˙ = 0 × ˙ V X
57 oveq1 y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X y D if y = k I if k = X n 0 1 ˙ 0 ˙ P V X = n × ˙ V X P V X
58 5 adantr φ n 0 I W
59 9 adantr φ n 0 R Ring
60 2 snifpsrbag I W n 0 k I if k = X n 0 D
61 5 60 sylan φ n 0 k I if k = X n 0 D
62 eqid P = P
63 1nn0 1 0
64 63 a1i n 0 1 0
65 2 snifpsrbag I W 1 0 k I if k = X 1 0 D
66 5 64 65 syl2an φ n 0 k I if k = X 1 0 D
67 1 48 3 4 2 58 59 61 62 66 mplmonmul φ n 0 y D if y = k I if k = X n 0 1 ˙ 0 ˙ P y D if y = k I if k = X 1 0 1 ˙ 0 ˙ = y D if y = k I if k = X n 0 + f k I if k = X 1 0 1 ˙ 0 ˙
68 10 adantr φ n 0 X I
69 8 2 3 4 58 59 68 mvrval φ n 0 V X = y D if y = k I if k = X 1 0 1 ˙ 0 ˙
70 69 eqcomd φ n 0 y D if y = k I if k = X 1 0 1 ˙ 0 ˙ = V X
71 70 oveq2d φ n 0 y D if y = k I if k = X n 0 1 ˙ 0 ˙ P y D if y = k I if k = X 1 0 1 ˙ 0 ˙ = y D if y = k I if k = X n 0 1 ˙ 0 ˙ P V X
72 simplr φ n 0 k I n 0
73 0nn0 0 0
74 ifcl n 0 0 0 if k = X n 0 0
75 72 73 74 sylancl φ n 0 k I if k = X n 0 0
76 63 73 ifcli if k = X 1 0 0
77 76 a1i φ n 0 k I if k = X 1 0 0
78 eqidd φ n 0 k I if k = X n 0 = k I if k = X n 0
79 eqidd φ n 0 k I if k = X 1 0 = k I if k = X 1 0
80 58 75 77 78 79 offval2 φ n 0 k I if k = X n 0 + f k I if k = X 1 0 = k I if k = X n 0 + if k = X 1 0
81 iftrue k = X if k = X n 0 = n
82 iftrue k = X if k = X 1 0 = 1
83 81 82 oveq12d k = X if k = X n 0 + if k = X 1 0 = n + 1
84 iftrue k = X if k = X n + 1 0 = n + 1
85 83 84 eqtr4d k = X if k = X n 0 + if k = X 1 0 = if k = X n + 1 0
86 00id 0 + 0 = 0
87 iffalse ¬ k = X if k = X n 0 = 0
88 iffalse ¬ k = X if k = X 1 0 = 0
89 87 88 oveq12d ¬ k = X if k = X n 0 + if k = X 1 0 = 0 + 0
90 iffalse ¬ k = X if k = X n + 1 0 = 0
91 86 89 90 3eqtr4a ¬ k = X if k = X n 0 + if k = X 1 0 = if k = X n + 1 0
92 85 91 pm2.61i if k = X n 0 + if k = X 1 0 = if k = X n + 1 0
93 92 mpteq2i k I if k = X n 0 + if k = X 1 0 = k I if k = X n + 1 0
94 80 93 syl6eq φ n 0 k I if k = X n 0 + f k I if k = X 1 0 = k I if k = X n + 1 0
95 94 eqeq2d φ n 0 y = k I if k = X n 0 + f k I if k = X 1 0 y = k I if k = X n + 1 0
96 95 ifbid φ n 0 if y = k I if k = X n 0 + f k I if k = X 1 0 1 ˙ 0 ˙ = if y = k I if k = X n + 1 0 1 ˙ 0 ˙
97 96 mpteq2dv φ n 0 y D if y = k I if k = X n 0 + f k I if k = X 1 0 1 ˙ 0 ˙ = y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙
98 67 71 97 3eqtr3rd φ n 0 y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = y D if y = k I if k = X n 0 1 ˙ 0 ˙ P V X
99 1 mplring I W R Ring P Ring
100 5 9 99 syl2anc φ P Ring
101 6 ringmgp P Ring G Mnd
102 100 101 syl φ G Mnd
103 102 adantr φ n 0 G Mnd
104 simpr φ n 0 n 0
105 49 adantr φ n 0 V X Base P
106 6 62 mgpplusg P = + G
107 50 7 106 mulgnn0p1 G Mnd n 0 V X Base P n + 1 × ˙ V X = n × ˙ V X P V X
108 103 104 105 107 syl3anc φ n 0 n + 1 × ˙ V X = n × ˙ V X P V X
109 98 108 eqeq12d φ n 0 y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X y D if y = k I if k = X n 0 1 ˙ 0 ˙ P V X = n × ˙ V X P V X
110 57 109 syl5ibr φ n 0 y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X
111 110 expcom n 0 φ y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X
112 111 a2d n 0 φ y D if y = k I if k = X n 0 1 ˙ 0 ˙ = n × ˙ V X φ y D if y = k I if k = X n + 1 0 1 ˙ 0 ˙ = n + 1 × ˙ V X
113 23 31 39 47 56 112 nn0ind N 0 φ y D if y = k I if k = X N 0 1 ˙ 0 ˙ = N × ˙ V X
114 11 113 mpcom φ y D if y = k I if k = X N 0 1 ˙ 0 ˙ = N × ˙ V X