Metamath Proof Explorer


Theorem mplcoe4

Description: Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015)

Ref Expression
Hypotheses mplcoe4.p P = I mPoly R
mplcoe4.d D = f 0 I | f -1 Fin
mplcoe4.z 0 ˙ = 0 R
mplcoe4.b B = Base P
mplcoe4.i φ I W
mplcoe4.r φ R Ring
mplcoe4.x φ X B
Assertion mplcoe4 φ X = P k D y D if y = k X k 0 ˙

Proof

Step Hyp Ref Expression
1 mplcoe4.p P = I mPoly R
2 mplcoe4.d D = f 0 I | f -1 Fin
3 mplcoe4.z 0 ˙ = 0 R
4 mplcoe4.b B = Base P
5 mplcoe4.i φ I W
6 mplcoe4.r φ R Ring
7 mplcoe4.x φ X B
8 eqid 1 R = 1 R
9 eqid P = P
10 1 2 3 8 5 4 9 6 7 mplcoe1 φ X = P k D X k P y D if y = k 1 R 0 ˙
11 eqid Base R = Base R
12 5 adantr φ k D I W
13 6 adantr φ k D R Ring
14 simpr φ k D k D
15 1 11 4 2 7 mplelf φ X : D Base R
16 15 ffvelrnda φ k D X k Base R
17 1 9 2 8 3 11 12 13 14 16 mplmon2 φ k D X k P y D if y = k 1 R 0 ˙ = y D if y = k X k 0 ˙
18 17 mpteq2dva φ k D X k P y D if y = k 1 R 0 ˙ = k D y D if y = k X k 0 ˙
19 18 oveq2d φ P k D X k P y D if y = k 1 R 0 ˙ = P k D y D if y = k X k 0 ˙
20 10 19 eqtrd φ X = P k D y D if y = k X k 0 ˙