Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
|
2 |
|
mplcoe1.d |
|
3 |
|
mplcoe1.z |
|
4 |
|
mplcoe1.o |
|
5 |
|
mplcoe1.i |
|
6 |
|
mplcoe2.g |
|
7 |
|
mplcoe2.m |
|
8 |
|
mplcoe2.v |
|
9 |
|
mplcoe5.r |
|
10 |
|
mplcoe5.y |
|
11 |
|
mplcoe5.c |
|
12 |
|
mplcoe5.s |
|
13 |
|
vex |
|
14 |
|
eqid |
|
15 |
14
|
elrnmpt |
|
16 |
13 15
|
mp1i |
|
17 |
|
vex |
|
18 |
14
|
elrnmpt |
|
19 |
17 18
|
mp1i |
|
20 |
|
fveq2 |
|
21 |
|
fveq2 |
|
22 |
20 21
|
oveq12d |
|
23 |
22
|
eqeq2d |
|
24 |
23
|
cbvrexvw |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
6 26
|
mgpplusg |
|
28 |
27
|
eqcomi |
|
29 |
1 5 9
|
mplringd |
|
30 |
|
ringsrg |
|
31 |
29 30
|
syl |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
6 25
|
mgpbas |
|
35 |
6
|
ringmgp |
|
36 |
29 35
|
syl |
|
37 |
36
|
adantr |
|
38 |
12
|
sseld |
|
39 |
38
|
imdistani |
|
40 |
2
|
psrbag |
|
41 |
5 40
|
syl |
|
42 |
10 41
|
mpbid |
|
43 |
42
|
simpld |
|
44 |
43
|
ffvelcdmda |
|
45 |
39 44
|
syl |
|
46 |
5
|
adantr |
|
47 |
9
|
adantr |
|
48 |
12
|
sselda |
|
49 |
1 8 25 46 47 48
|
mvrcl |
|
50 |
34 7 37 45 49
|
mulgnn0cld |
|
51 |
50
|
adantr |
|
52 |
5
|
adantr |
|
53 |
9
|
adantr |
|
54 |
12
|
sselda |
|
55 |
1 8 25 52 53 54
|
mvrcl |
|
56 |
55
|
adantlr |
|
57 |
43
|
ffvelcdmda |
|
58 |
54 57
|
syldan |
|
59 |
58
|
adantlr |
|
60 |
49
|
adantr |
|
61 |
45
|
adantr |
|
62 |
|
fveq2 |
|
63 |
62
|
oveq2d |
|
64 |
62
|
oveq1d |
|
65 |
63 64
|
eqeq12d |
|
66 |
|
fveq2 |
|
67 |
66
|
oveq1d |
|
68 |
66
|
oveq2d |
|
69 |
67 68
|
eqeq12d |
|
70 |
65 69
|
rspc2v |
|
71 |
48 54
|
anim12dan |
|
72 |
70 71
|
syl11 |
|
73 |
72
|
expd |
|
74 |
11 73
|
mpcom |
|
75 |
74
|
impl |
|
76 |
25 28 6 7 33 56 60 61 75
|
srgpcomp |
|
77 |
25 28 6 7 33 51 56 59 76
|
srgpcomp |
|
78 |
|
oveq12 |
|
79 |
|
oveq12 |
|
80 |
79
|
ancoms |
|
81 |
78 80
|
eqeq12d |
|
82 |
77 81
|
syl5ibrcom |
|
83 |
82
|
expd |
|
84 |
83
|
rexlimdva |
|
85 |
84
|
com23 |
|
86 |
85
|
rexlimdva |
|
87 |
24 86
|
biimtrid |
|
88 |
19 87
|
sylbid |
|
89 |
88
|
com23 |
|
90 |
16 89
|
sylbid |
|
91 |
90
|
imp32 |
|
92 |
91
|
ralrimivva |
|
93 |
|
eqid |
|
94 |
36
|
adantr |
|
95 |
12
|
sseld |
|
96 |
95
|
imdistani |
|
97 |
96 57
|
syl |
|
98 |
55 34
|
eleqtrdi |
|
99 |
93 7 94 97 98
|
mulgnn0cld |
|
100 |
99
|
fmpttd |
|
101 |
100
|
frnd |
|
102 |
|
eqid |
|
103 |
|
eqid |
|
104 |
93 102 103
|
sscntz |
|
105 |
101 101 104
|
syl2anc |
|
106 |
92 105
|
mpbird |
|