| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe1.p |  | 
						
							| 2 |  | mplcoe1.d |  | 
						
							| 3 |  | mplcoe1.z |  | 
						
							| 4 |  | mplcoe1.o |  | 
						
							| 5 |  | mplcoe1.i |  | 
						
							| 6 |  | mplcoe2.g |  | 
						
							| 7 |  | mplcoe2.m |  | 
						
							| 8 |  | mplcoe2.v |  | 
						
							| 9 |  | mplcoe5.r |  | 
						
							| 10 |  | mplcoe5.y |  | 
						
							| 11 |  | mplcoe5.c |  | 
						
							| 12 |  | mplcoe5.s |  | 
						
							| 13 |  | vex |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 | elrnmpt |  | 
						
							| 16 | 13 15 | mp1i |  | 
						
							| 17 |  | vex |  | 
						
							| 18 | 14 | elrnmpt |  | 
						
							| 19 | 17 18 | mp1i |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 |  | fveq2 |  | 
						
							| 22 | 20 21 | oveq12d |  | 
						
							| 23 | 22 | eqeq2d |  | 
						
							| 24 | 23 | cbvrexvw |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 6 26 | mgpplusg |  | 
						
							| 28 | 27 | eqcomi |  | 
						
							| 29 | 1 5 9 | mplringd |  | 
						
							| 30 |  | ringsrg |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 6 25 | mgpbas |  | 
						
							| 35 | 6 | ringmgp |  | 
						
							| 36 | 29 35 | syl |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 12 | sseld |  | 
						
							| 39 | 38 | imdistani |  | 
						
							| 40 | 2 | psrbag |  | 
						
							| 41 | 5 40 | syl |  | 
						
							| 42 | 10 41 | mpbid |  | 
						
							| 43 | 42 | simpld |  | 
						
							| 44 | 43 | ffvelcdmda |  | 
						
							| 45 | 39 44 | syl |  | 
						
							| 46 | 5 | adantr |  | 
						
							| 47 | 9 | adantr |  | 
						
							| 48 | 12 | sselda |  | 
						
							| 49 | 1 8 25 46 47 48 | mvrcl |  | 
						
							| 50 | 34 7 37 45 49 | mulgnn0cld |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 5 | adantr |  | 
						
							| 53 | 9 | adantr |  | 
						
							| 54 | 12 | sselda |  | 
						
							| 55 | 1 8 25 52 53 54 | mvrcl |  | 
						
							| 56 | 55 | adantlr |  | 
						
							| 57 | 43 | ffvelcdmda |  | 
						
							| 58 | 54 57 | syldan |  | 
						
							| 59 | 58 | adantlr |  | 
						
							| 60 | 49 | adantr |  | 
						
							| 61 | 45 | adantr |  | 
						
							| 62 |  | fveq2 |  | 
						
							| 63 | 62 | oveq2d |  | 
						
							| 64 | 62 | oveq1d |  | 
						
							| 65 | 63 64 | eqeq12d |  | 
						
							| 66 |  | fveq2 |  | 
						
							| 67 | 66 | oveq1d |  | 
						
							| 68 | 66 | oveq2d |  | 
						
							| 69 | 67 68 | eqeq12d |  | 
						
							| 70 | 65 69 | rspc2v |  | 
						
							| 71 | 48 54 | anim12dan |  | 
						
							| 72 | 70 71 | syl11 |  | 
						
							| 73 | 72 | expd |  | 
						
							| 74 | 11 73 | mpcom |  | 
						
							| 75 | 74 | impl |  | 
						
							| 76 | 25 28 6 7 33 56 60 61 75 | srgpcomp |  | 
						
							| 77 | 25 28 6 7 33 51 56 59 76 | srgpcomp |  | 
						
							| 78 |  | oveq12 |  | 
						
							| 79 |  | oveq12 |  | 
						
							| 80 | 79 | ancoms |  | 
						
							| 81 | 78 80 | eqeq12d |  | 
						
							| 82 | 77 81 | syl5ibrcom |  | 
						
							| 83 | 82 | expd |  | 
						
							| 84 | 83 | rexlimdva |  | 
						
							| 85 | 84 | com23 |  | 
						
							| 86 | 85 | rexlimdva |  | 
						
							| 87 | 24 86 | biimtrid |  | 
						
							| 88 | 19 87 | sylbid |  | 
						
							| 89 | 88 | com23 |  | 
						
							| 90 | 16 89 | sylbid |  | 
						
							| 91 | 90 | imp32 |  | 
						
							| 92 | 91 | ralrimivva |  | 
						
							| 93 |  | eqid |  | 
						
							| 94 | 36 | adantr |  | 
						
							| 95 | 12 | sseld |  | 
						
							| 96 | 95 | imdistani |  | 
						
							| 97 | 96 57 | syl |  | 
						
							| 98 | 55 34 | eleqtrdi |  | 
						
							| 99 | 93 7 94 97 98 | mulgnn0cld |  | 
						
							| 100 | 99 | fmpttd |  | 
						
							| 101 | 100 | frnd |  | 
						
							| 102 |  | eqid |  | 
						
							| 103 |  | eqid |  | 
						
							| 104 | 93 102 103 | sscntz |  | 
						
							| 105 | 101 101 104 | syl2anc |  | 
						
							| 106 | 92 105 | mpbird |  |