Metamath Proof Explorer


Theorem mplcrng

Description: The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P = I mPoly R
Assertion mplcrng I V R CRing P CRing

Proof

Step Hyp Ref Expression
1 mplgrp.p P = I mPoly R
2 eqid I mPwSer R = I mPwSer R
3 simpl I V R CRing I V
4 simpr I V R CRing R CRing
5 2 3 4 psrcrng I V R CRing I mPwSer R CRing
6 eqid Base P = Base P
7 crngring R CRing R Ring
8 7 adantl I V R CRing R Ring
9 2 1 6 3 8 mplsubrg I V R CRing Base P SubRing I mPwSer R
10 1 2 6 mplval2 P = I mPwSer R 𝑠 Base P
11 10 subrgcrng I mPwSer R CRing Base P SubRing I mPwSer R P CRing
12 5 9 11 syl2anc I V R CRing P CRing