Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplcrng
Next ⟩
mplassa
Metamath Proof Explorer
Ascii
Unicode
Theorem
mplcrng
Description:
The polynomial ring is a commutative ring.
(Contributed by
Mario Carneiro
, 9-Jan-2015)
Ref
Expression
Hypothesis
mplgrp.p
⊢
P
=
I
mPoly
R
Assertion
mplcrng
⊢
I
∈
V
∧
R
∈
CRing
→
P
∈
CRing
Proof
Step
Hyp
Ref
Expression
1
mplgrp.p
⊢
P
=
I
mPoly
R
2
eqid
⊢
I
mPwSer
R
=
I
mPwSer
R
3
simpl
⊢
I
∈
V
∧
R
∈
CRing
→
I
∈
V
4
simpr
⊢
I
∈
V
∧
R
∈
CRing
→
R
∈
CRing
5
2
3
4
psrcrng
⊢
I
∈
V
∧
R
∈
CRing
→
I
mPwSer
R
∈
CRing
6
eqid
⊢
Base
P
=
Base
P
7
crngring
⊢
R
∈
CRing
→
R
∈
Ring
8
7
adantl
⊢
I
∈
V
∧
R
∈
CRing
→
R
∈
Ring
9
2
1
6
3
8
mplsubrg
⊢
I
∈
V
∧
R
∈
CRing
→
Base
P
∈
SubRing
⁡
I
mPwSer
R
10
1
2
6
mplval2
⊢
P
=
I
mPwSer
R
↾
𝑠
Base
P
11
10
subrgcrng
⊢
I
mPwSer
R
∈
CRing
∧
Base
P
∈
SubRing
⁡
I
mPwSer
R
→
P
∈
CRing
12
5
9
11
syl2anc
⊢
I
∈
V
∧
R
∈
CRing
→
P
∈
CRing