Metamath Proof Explorer


Theorem mplcrngd

Description: The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplcrngd.p P = I mPoly R
mplcrngd.i φ I V
mplcrngd.r φ R CRing
Assertion mplcrngd φ P CRing

Proof

Step Hyp Ref Expression
1 mplcrngd.p P = I mPoly R
2 mplcrngd.i φ I V
3 mplcrngd.r φ R CRing
4 1 mplcrng I V R CRing P CRing
5 2 3 4 syl2anc φ P CRing