Metamath Proof Explorer


Theorem mplelbas

Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P = I mPoly R
mplval.s S = I mPwSer R
mplval.b B = Base S
mplval.z 0 ˙ = 0 R
mplbas.u U = Base P
Assertion mplelbas X U X B finSupp 0 ˙ X

Proof

Step Hyp Ref Expression
1 mplval.p P = I mPoly R
2 mplval.s S = I mPwSer R
3 mplval.b B = Base S
4 mplval.z 0 ˙ = 0 R
5 mplbas.u U = Base P
6 breq1 f = X finSupp 0 ˙ f finSupp 0 ˙ X
7 1 2 3 4 5 mplbas U = f B | finSupp 0 ˙ f
8 6 7 elrab2 X U X B finSupp 0 ˙ X