Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplelbas
Metamath Proof Explorer
Description: Property of being a polynomial. (Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario Carneiro , 2-Oct-2015) (Revised by AV , 25-Jun-2019)
Ref
Expression
Hypotheses
mplval.p
⊢ P = I mPoly R
mplval.s
⊢ S = I mPwSer R
mplval.b
⊢ B = Base S
mplval.z
⊢ 0 ˙ = 0 R
mplbas.u
⊢ U = Base P
Assertion
mplelbas
⊢ X ∈ U ↔ X ∈ B ∧ finSupp 0 ˙ ⁡ X
Proof
Step
Hyp
Ref
Expression
1
mplval.p
⊢ P = I mPoly R
2
mplval.s
⊢ S = I mPwSer R
3
mplval.b
⊢ B = Base S
4
mplval.z
⊢ 0 ˙ = 0 R
5
mplbas.u
⊢ U = Base P
6
breq1
⊢ f = X → finSupp 0 ˙ ⁡ f ↔ finSupp 0 ˙ ⁡ X
7
1 2 3 4 5
mplbas
⊢ U = f ∈ B | finSupp 0 ˙ ⁡ f
8
6 7
elrab2
⊢ X ∈ U ↔ X ∈ B ∧ finSupp 0 ˙ ⁡ X