Metamath Proof Explorer


Theorem mplelsfi

Description: A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplrcl.p P = I mPoly R
mplrcl.b B = Base P
mplelsfi.z 0 ˙ = 0 R
mplelsfi.f φ F B
mplelsfi.r φ R V
Assertion mplelsfi φ finSupp 0 ˙ F

Proof

Step Hyp Ref Expression
1 mplrcl.p P = I mPoly R
2 mplrcl.b B = Base P
3 mplelsfi.z 0 ˙ = 0 R
4 mplelsfi.f φ F B
5 mplelsfi.r φ R V
6 eqid I mPwSer R = I mPwSer R
7 eqid Base I mPwSer R = Base I mPwSer R
8 1 6 7 3 2 mplelbas F B F Base I mPwSer R finSupp 0 ˙ F
9 8 simprbi F B finSupp 0 ˙ F
10 4 9 syl φ finSupp 0 ˙ F