Metamath Proof Explorer


Theorem mplmapghm

Description: The function H mapping polynomials p to their coefficient given a bag of variables F is a group homomorphism. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses mplmapghm.p P = I mPoly R
mplmapghm.b B = Base P
mplmapghm.d D = f 0 I | f -1 Fin
mplmapghm.h H = p B p F
mplmapghm.i φ I V
mplmapghm.r φ R Grp
mplmapghm.f φ F D
Assertion mplmapghm φ H P GrpHom R

Proof

Step Hyp Ref Expression
1 mplmapghm.p P = I mPoly R
2 mplmapghm.b B = Base P
3 mplmapghm.d D = f 0 I | f -1 Fin
4 mplmapghm.h H = p B p F
5 mplmapghm.i φ I V
6 mplmapghm.r φ R Grp
7 mplmapghm.f φ F D
8 eqid Base R = Base R
9 eqid + P = + P
10 eqid + R = + R
11 1 mplgrp I V R Grp P Grp
12 5 6 11 syl2anc φ P Grp
13 simpr φ p B p B
14 1 8 2 3 13 mplelf φ p B p : D Base R
15 7 adantr φ p B F D
16 14 15 ffvelcdmd φ p B p F Base R
17 16 4 fmptd φ H : B Base R
18 simprl φ q B r B q B
19 simprr φ q B r B r B
20 1 2 10 9 18 19 mpladd φ q B r B q + P r = q + R f r
21 20 fveq1d φ q B r B q + P r F = q + R f r F
22 1 8 2 3 18 mplelf φ q B r B q : D Base R
23 22 ffnd φ q B r B q Fn D
24 1 8 2 3 19 mplelf φ q B r B r : D Base R
25 24 ffnd φ q B r B r Fn D
26 ovex 0 I V
27 3 26 rabex2 D V
28 27 a1i φ q B r B D V
29 inidm D D = D
30 eqidd φ q B r B F D q F = q F
31 eqidd φ q B r B F D r F = r F
32 23 25 28 28 29 30 31 ofval φ q B r B F D q + R f r F = q F + R r F
33 7 32 mpidan φ q B r B q + R f r F = q F + R r F
34 21 33 eqtrd φ q B r B q + P r F = q F + R r F
35 fveq1 p = q + P r p F = q + P r F
36 12 adantr φ q B r B P Grp
37 2 9 36 18 19 grpcld φ q B r B q + P r B
38 fvexd φ q B r B q + P r F V
39 4 35 37 38 fvmptd3 φ q B r B H q + P r = q + P r F
40 fveq1 p = q p F = q F
41 fvexd φ q B r B q F V
42 4 40 18 41 fvmptd3 φ q B r B H q = q F
43 fveq1 p = r p F = r F
44 fvexd φ q B r B r F V
45 4 43 19 44 fvmptd3 φ q B r B H r = r F
46 42 45 oveq12d φ q B r B H q + R H r = q F + R r F
47 34 39 46 3eqtr4d φ q B r B H q + P r = H q + R H r
48 2 8 9 10 12 6 17 47 isghmd φ H P GrpHom R