Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon.s |
|
2 |
|
mplmon.b |
|
3 |
|
mplmon.z |
|
4 |
|
mplmon.o |
|
5 |
|
mplmon.d |
|
6 |
|
mplmon.i |
|
7 |
|
mplmon.r |
|
8 |
|
mplmon.x |
|
9 |
|
eqid |
|
10 |
9 4
|
ringidcl |
|
11 |
9 3
|
ring0cl |
|
12 |
10 11
|
ifcld |
|
13 |
7 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
14
|
fmpttd |
|
16 |
|
fvex |
|
17 |
|
ovex |
|
18 |
5 17
|
rabex2 |
|
19 |
16 18
|
elmap |
|
20 |
15 19
|
sylibr |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
21 9 5 22 6
|
psrbas |
|
24 |
20 23
|
eleqtrrd |
|
25 |
18
|
mptex |
|
26 |
|
funmpt |
|
27 |
3
|
fvexi |
|
28 |
25 26 27
|
3pm3.2i |
|
29 |
28
|
a1i |
|
30 |
|
snfi |
|
31 |
30
|
a1i |
|
32 |
|
eldifsni |
|
33 |
32
|
adantl |
|
34 |
33
|
neneqd |
|
35 |
34
|
iffalsed |
|
36 |
18
|
a1i |
|
37 |
35 36
|
suppss2 |
|
38 |
|
suppssfifsupp |
|
39 |
29 31 37 38
|
syl12anc |
|
40 |
1 21 22 3 2
|
mplelbas |
|
41 |
24 39 40
|
sylanbrc |
|