Metamath Proof Explorer


Theorem mplmul

Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplmul.p P = I mPoly R
mplmul.b B = Base P
mplmul.m · ˙ = R
mplmul.t ˙ = P
mplmul.d D = h 0 I | h -1 Fin
mplmul.f φ F B
mplmul.g φ G B
Assertion mplmul φ F ˙ G = k D R x y D | y f k F x · ˙ G k f x

Proof

Step Hyp Ref Expression
1 mplmul.p P = I mPoly R
2 mplmul.b B = Base P
3 mplmul.m · ˙ = R
4 mplmul.t ˙ = P
5 mplmul.d D = h 0 I | h -1 Fin
6 mplmul.f φ F B
7 mplmul.g φ G B
8 eqid I mPwSer R = I mPwSer R
9 eqid Base I mPwSer R = Base I mPwSer R
10 2 fvexi B V
11 1 8 2 mplval2 P = I mPwSer R 𝑠 B
12 eqid I mPwSer R = I mPwSer R
13 11 12 ressmulr B V I mPwSer R = P
14 10 13 ax-mp I mPwSer R = P
15 4 14 eqtr4i ˙ = I mPwSer R
16 1 8 2 9 mplbasss B Base I mPwSer R
17 16 6 sselid φ F Base I mPwSer R
18 16 7 sselid φ G Base I mPwSer R
19 8 9 3 15 5 17 18 psrmulfval φ F ˙ G = k D R x y D | y f k F x · ˙ G k f x