Metamath Proof Explorer


Theorem mplplusg

Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplplusg.y Y = I mPoly R
mplplusg.s S = I mPwSer R
mplplusg.p + ˙ = + Y
Assertion mplplusg + ˙ = + S

Proof

Step Hyp Ref Expression
1 mplplusg.y Y = I mPoly R
2 mplplusg.s S = I mPwSer R
3 mplplusg.p + ˙ = + Y
4 fvex Base Y V
5 eqid Base Y = Base Y
6 1 2 5 mplval2 Y = S 𝑠 Base Y
7 eqid + S = + S
8 6 7 ressplusg Base Y V + S = + Y
9 4 8 ax-mp + S = + Y
10 3 9 eqtr4i + ˙ = + S