Metamath Proof Explorer


Theorem mplrcl

Description: Reverse closure for the polynomial index set. (Contributed by Stefan O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses mplrcl.p P = I mPoly R
mplrcl.b B = Base P
Assertion mplrcl X B I V

Proof

Step Hyp Ref Expression
1 mplrcl.p P = I mPoly R
2 mplrcl.b B = Base P
3 reldmmpl Rel dom mPoly
4 1 2 3 strov2rcl X B I V