Metamath Proof Explorer


Theorem mplring

Description: The polynomial ring is a ring. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypothesis mplgrp.p P = I mPoly R
Assertion mplring I V R Ring P Ring

Proof

Step Hyp Ref Expression
1 mplgrp.p P = I mPoly R
2 eqid I mPwSer R = I mPwSer R
3 eqid Base P = Base P
4 simpl I V R Ring I V
5 simpr I V R Ring R Ring
6 2 1 3 4 5 mplsubrg I V R Ring Base P SubRing I mPwSer R
7 1 2 3 mplval2 P = I mPwSer R 𝑠 Base P
8 7 subrgring Base P SubRing I mPwSer R P Ring
9 6 8 syl I V R Ring P Ring