Metamath Proof Explorer


Theorem mplsca

Description: The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplsca.p P = I mPoly R
mplsca.i φ I V
mplsca.r φ R W
Assertion mplsca φ R = Scalar P

Proof

Step Hyp Ref Expression
1 mplsca.p P = I mPoly R
2 mplsca.i φ I V
3 mplsca.r φ R W
4 eqid I mPwSer R = I mPwSer R
5 4 2 3 psrsca φ R = Scalar I mPwSer R
6 fvex Base P V
7 eqid Base P = Base P
8 1 4 7 mplval2 P = I mPwSer R 𝑠 Base P
9 eqid Scalar I mPwSer R = Scalar I mPwSer R
10 8 9 resssca Base P V Scalar I mPwSer R = Scalar P
11 6 10 ax-mp Scalar I mPwSer R = Scalar P
12 5 11 eqtrdi φ R = Scalar P