Step |
Hyp |
Ref |
Expression |
1 |
|
mplsubg.s |
|
2 |
|
mplsubg.p |
|
3 |
|
mplsubg.u |
|
4 |
|
mplsubg.i |
|
5 |
|
mpllss.r |
|
6 |
|
ringgrp |
|
7 |
5 6
|
syl |
|
8 |
1 2 3 4 7
|
mplsubg |
|
9 |
1 4 5
|
psrring |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
10 11
|
ringidcl |
|
13 |
9 12
|
syl |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
1 4 5 14 15 16 11
|
psr1 |
|
18 |
|
ovex |
|
19 |
18
|
mptrabex |
|
20 |
|
funmpt |
|
21 |
|
fvex |
|
22 |
19 20 21
|
3pm3.2i |
|
23 |
22
|
a1i |
|
24 |
|
snfi |
|
25 |
24
|
a1i |
|
26 |
|
eldifsni |
|
27 |
26
|
adantl |
|
28 |
|
ifnefalse |
|
29 |
27 28
|
syl |
|
30 |
18
|
rabex |
|
31 |
30
|
a1i |
|
32 |
29 31
|
suppss2 |
|
33 |
|
suppssfifsupp |
|
34 |
23 25 32 33
|
syl12anc |
|
35 |
17 34
|
eqbrtrd |
|
36 |
2 1 10 15 3
|
mplelbas |
|
37 |
13 35 36
|
sylanbrc |
|
38 |
4
|
adantr |
|
39 |
5
|
adantr |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
simprl |
|
43 |
|
simprr |
|
44 |
1 2 3 38 39 14 15 40 41 42 43
|
mplsubrglem |
|
45 |
44
|
ralrimivva |
|
46 |
|
eqid |
|
47 |
10 11 46
|
issubrg2 |
|
48 |
9 47
|
syl |
|
49 |
8 37 45 48
|
mpbir3and |
|