| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubg.s |
|
| 2 |
|
mplsubg.p |
|
| 3 |
|
mplsubg.u |
|
| 4 |
|
mplsubg.i |
|
| 5 |
|
mpllss.r |
|
| 6 |
|
ringgrp |
|
| 7 |
5 6
|
syl |
|
| 8 |
1 2 3 4 7
|
mplsubg |
|
| 9 |
1 4 5
|
psrring |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
10 11
|
ringidcl |
|
| 13 |
9 12
|
syl |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
1 4 5 14 15 16 11
|
psr1 |
|
| 18 |
|
ovex |
|
| 19 |
18
|
mptrabex |
|
| 20 |
|
funmpt |
|
| 21 |
|
fvex |
|
| 22 |
19 20 21
|
3pm3.2i |
|
| 23 |
22
|
a1i |
|
| 24 |
|
snfi |
|
| 25 |
24
|
a1i |
|
| 26 |
|
eldifsni |
|
| 27 |
26
|
adantl |
|
| 28 |
|
ifnefalse |
|
| 29 |
27 28
|
syl |
|
| 30 |
18
|
rabex |
|
| 31 |
30
|
a1i |
|
| 32 |
29 31
|
suppss2 |
|
| 33 |
|
suppssfifsupp |
|
| 34 |
23 25 32 33
|
syl12anc |
|
| 35 |
17 34
|
eqbrtrd |
|
| 36 |
2 1 10 15 3
|
mplelbas |
|
| 37 |
13 35 36
|
sylanbrc |
|
| 38 |
4
|
adantr |
|
| 39 |
5
|
adantr |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
simprl |
|
| 43 |
|
simprr |
|
| 44 |
1 2 3 38 39 14 15 40 41 42 43
|
mplsubrglem |
|
| 45 |
44
|
ralrimivva |
|
| 46 |
|
eqid |
|
| 47 |
10 11 46
|
issubrg2 |
|
| 48 |
9 47
|
syl |
|
| 49 |
8 37 45 48
|
mpbir3and |
|