Metamath Proof Explorer


Theorem mplsubrg

Description: The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplsubg.s S = I mPwSer R
mplsubg.p P = I mPoly R
mplsubg.u U = Base P
mplsubg.i φ I W
mpllss.r φ R Ring
Assertion mplsubrg φ U SubRing S

Proof

Step Hyp Ref Expression
1 mplsubg.s S = I mPwSer R
2 mplsubg.p P = I mPoly R
3 mplsubg.u U = Base P
4 mplsubg.i φ I W
5 mpllss.r φ R Ring
6 ringgrp R Ring R Grp
7 5 6 syl φ R Grp
8 1 2 3 4 7 mplsubg φ U SubGrp S
9 1 4 5 psrring φ S Ring
10 eqid Base S = Base S
11 eqid 1 S = 1 S
12 10 11 ringidcl S Ring 1 S Base S
13 9 12 syl φ 1 S Base S
14 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
15 eqid 0 R = 0 R
16 eqid 1 R = 1 R
17 1 4 5 14 15 16 11 psr1 φ 1 S = k f 0 I | f -1 Fin if k = I × 0 1 R 0 R
18 ovex 0 I V
19 18 mptrabex k f 0 I | f -1 Fin if k = I × 0 1 R 0 R V
20 funmpt Fun k f 0 I | f -1 Fin if k = I × 0 1 R 0 R
21 fvex 0 R V
22 19 20 21 3pm3.2i k f 0 I | f -1 Fin if k = I × 0 1 R 0 R V Fun k f 0 I | f -1 Fin if k = I × 0 1 R 0 R 0 R V
23 22 a1i φ k f 0 I | f -1 Fin if k = I × 0 1 R 0 R V Fun k f 0 I | f -1 Fin if k = I × 0 1 R 0 R 0 R V
24 snfi I × 0 Fin
25 24 a1i φ I × 0 Fin
26 eldifsni k f 0 I | f -1 Fin I × 0 k I × 0
27 26 adantl φ k f 0 I | f -1 Fin I × 0 k I × 0
28 ifnefalse k I × 0 if k = I × 0 1 R 0 R = 0 R
29 27 28 syl φ k f 0 I | f -1 Fin I × 0 if k = I × 0 1 R 0 R = 0 R
30 18 rabex f 0 I | f -1 Fin V
31 30 a1i φ f 0 I | f -1 Fin V
32 29 31 suppss2 φ k f 0 I | f -1 Fin if k = I × 0 1 R 0 R supp 0 R I × 0
33 suppssfifsupp k f 0 I | f -1 Fin if k = I × 0 1 R 0 R V Fun k f 0 I | f -1 Fin if k = I × 0 1 R 0 R 0 R V I × 0 Fin k f 0 I | f -1 Fin if k = I × 0 1 R 0 R supp 0 R I × 0 finSupp 0 R k f 0 I | f -1 Fin if k = I × 0 1 R 0 R
34 23 25 32 33 syl12anc φ finSupp 0 R k f 0 I | f -1 Fin if k = I × 0 1 R 0 R
35 17 34 eqbrtrd φ finSupp 0 R 1 S
36 2 1 10 15 3 mplelbas 1 S U 1 S Base S finSupp 0 R 1 S
37 13 35 36 sylanbrc φ 1 S U
38 4 adantr φ x U y U I W
39 5 adantr φ x U y U R Ring
40 eqid f + supp 0 R x × supp 0 R y = f + supp 0 R x × supp 0 R y
41 eqid R = R
42 simprl φ x U y U x U
43 simprr φ x U y U y U
44 1 2 3 38 39 14 15 40 41 42 43 mplsubrglem φ x U y U x S y U
45 44 ralrimivva φ x U y U x S y U
46 eqid S = S
47 10 11 46 issubrg2 S Ring U SubRing S U SubGrp S 1 S U x U y U x S y U
48 9 47 syl φ U SubRing S U SubGrp S 1 S U x U y U x S y U
49 8 37 45 48 mpbir3and φ U SubRing S