Metamath Proof Explorer


Theorem mplval

Description: Value of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p P = I mPoly R
mplval.s S = I mPwSer R
mplval.b B = Base S
mplval.z 0 ˙ = 0 R
mplval.u U = f B | finSupp 0 ˙ f
Assertion mplval P = S 𝑠 U

Proof

Step Hyp Ref Expression
1 mplval.p P = I mPoly R
2 mplval.s S = I mPwSer R
3 mplval.b B = Base S
4 mplval.z 0 ˙ = 0 R
5 mplval.u U = f B | finSupp 0 ˙ f
6 ovexd i = I r = R i mPwSer r V
7 id s = i mPwSer r s = i mPwSer r
8 oveq12 i = I r = R i mPwSer r = I mPwSer R
9 7 8 sylan9eqr i = I r = R s = i mPwSer r s = I mPwSer R
10 9 2 syl6eqr i = I r = R s = i mPwSer r s = S
11 10 fveq2d i = I r = R s = i mPwSer r Base s = Base S
12 11 3 syl6eqr i = I r = R s = i mPwSer r Base s = B
13 simplr i = I r = R s = i mPwSer r r = R
14 13 fveq2d i = I r = R s = i mPwSer r 0 r = 0 R
15 14 4 syl6eqr i = I r = R s = i mPwSer r 0 r = 0 ˙
16 15 breq2d i = I r = R s = i mPwSer r finSupp 0 r f finSupp 0 ˙ f
17 12 16 rabeqbidv i = I r = R s = i mPwSer r f Base s | finSupp 0 r f = f B | finSupp 0 ˙ f
18 17 5 syl6eqr i = I r = R s = i mPwSer r f Base s | finSupp 0 r f = U
19 10 18 oveq12d i = I r = R s = i mPwSer r s 𝑠 f Base s | finSupp 0 r f = S 𝑠 U
20 6 19 csbied i = I r = R i mPwSer r / s s 𝑠 f Base s | finSupp 0 r f = S 𝑠 U
21 df-mpl mPoly = i V , r V i mPwSer r / s s 𝑠 f Base s | finSupp 0 r f
22 ovex S 𝑠 U V
23 20 21 22 ovmpoa I V R V I mPoly R = S 𝑠 U
24 reldmmpl Rel dom mPoly
25 24 ovprc ¬ I V R V I mPoly R =
26 ress0 𝑠 U =
27 25 26 syl6eqr ¬ I V R V I mPoly R = 𝑠 U
28 reldmpsr Rel dom mPwSer
29 28 ovprc ¬ I V R V I mPwSer R =
30 2 29 syl5eq ¬ I V R V S =
31 30 oveq1d ¬ I V R V S 𝑠 U = 𝑠 U
32 27 31 eqtr4d ¬ I V R V I mPoly R = S 𝑠 U
33 23 32 pm2.61i I mPoly R = S 𝑠 U
34 1 33 eqtri P = S 𝑠 U