Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
mplval2
Metamath Proof Explorer
Description: Self-referential expression for the set of multivariate polynomials.
(Contributed by Mario Carneiro , 7-Jan-2015) (Revised by Mario
Carneiro , 2-Oct-2015)
Ref
Expression
Hypotheses
mplval2.p
⊢ P = I mPoly R
mplval2.s
⊢ S = I mPwSer R
mplval2.u
⊢ U = Base P
Assertion
mplval2
⊢ P = S ↾ 𝑠 U
Proof
Step
Hyp
Ref
Expression
1
mplval2.p
⊢ P = I mPoly R
2
mplval2.s
⊢ S = I mPwSer R
3
mplval2.u
⊢ U = Base P
4
eqid
⊢ Base S = Base S
5
eqid
⊢ 0 R = 0 R
6
1 2 4 5 3
mplbas
⊢ U = f ∈ Base S | finSupp 0 R ⁡ f
7
1 2 4 5 6
mplval
⊢ P = S ↾ 𝑠 U