Database BASIC LINEAR ALGEBRA Abstract multivariate polynomials Definition and basic properties mplval2  
				
		 
		
			
		 
		Description:   Self-referential expression for the set of multivariate polynomials.
       (Contributed by Mario Carneiro , 7-Jan-2015)   (Revised by Mario
       Carneiro , 2-Oct-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mplval2.p   ⊢   P  =  I   mPoly   R      
					 
					
						mplval2.s   ⊢   S  =  I   mPwSer   R      
					 
					
						mplval2.u   ⊢   U  =  Base  P      
					 
				
					Assertion 
					mplval2   ⊢   P  =  S  ↾  𝑠 U      
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mplval2.p  ⊢   P  =  I   mPoly   R      
						
							2 
								
							 
							mplval2.s  ⊢   S  =  I   mPwSer   R      
						
							3 
								
							 
							mplval2.u  ⊢   U  =  Base  P      
						
							4 
								
							 
							eqid  ⊢   Base  S =  Base  S      
						
							5 
								
							 
							eqid  ⊢   0  R =  0  R      
						
							6 
								1  2  4  5  3 
							 
							mplbas  ⊢   U  =   f  ∈  Base  S |  finSupp  0  R ⁡  f        
						
							7 
								1  2  4  5  6 
							 
							mplval  ⊢   P  =  S  ↾  𝑠 U