Metamath Proof Explorer


Theorem mplvsca2

Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplvsca2.p P = I mPoly R
mplvsca2.s S = I mPwSer R
mplvsca2.n · ˙ = P
Assertion mplvsca2 · ˙ = S

Proof

Step Hyp Ref Expression
1 mplvsca2.p P = I mPoly R
2 mplvsca2.s S = I mPwSer R
3 mplvsca2.n · ˙ = P
4 fvex Base P V
5 eqid Base P = Base P
6 1 2 5 mplval2 P = S 𝑠 Base P
7 eqid S = S
8 6 7 ressvsca Base P V S = P
9 4 8 ax-mp S = P
10 3 9 eqtr4i · ˙ = S