Metamath Proof Explorer


Theorem mply1topmatcl

Description: A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019)

Ref Expression
Hypotheses mply1topmat.a A = N Mat R
mply1topmat.q Q = Poly 1 A
mply1topmat.l L = Base Q
mply1topmat.p P = Poly 1 R
mply1topmat.m · ˙ = P
mply1topmat.e E = mulGrp P
mply1topmat.y Y = var 1 R
mply1topmat.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
mply1topmatcl.c C = N Mat P
mply1topmatcl.b B = Base C
Assertion mply1topmatcl N Fin R Ring O L I O B

Proof

Step Hyp Ref Expression
1 mply1topmat.a A = N Mat R
2 mply1topmat.q Q = Poly 1 A
3 mply1topmat.l L = Base Q
4 mply1topmat.p P = Poly 1 R
5 mply1topmat.m · ˙ = P
6 mply1topmat.e E = mulGrp P
7 mply1topmat.y Y = var 1 R
8 mply1topmat.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
9 mply1topmatcl.c C = N Mat P
10 mply1topmatcl.b B = Base C
11 1 2 3 4 5 6 7 8 mply1topmatval N Fin O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y
12 11 3adant2 N Fin R Ring O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y
13 eqid Base P = Base P
14 simp1 N Fin R Ring O L N Fin
15 4 fvexi P V
16 15 a1i N Fin R Ring O L P V
17 eqid 0 P = 0 P
18 4 ply1ring R Ring P Ring
19 ringcmn P Ring P CMnd
20 18 19 syl R Ring P CMnd
21 20 3ad2ant2 N Fin R Ring O L P CMnd
22 21 3ad2ant1 N Fin R Ring O L i N j N P CMnd
23 nn0ex 0 V
24 23 a1i N Fin R Ring O L i N j N 0 V
25 4 ply1lmod R Ring P LMod
26 25 3ad2ant2 N Fin R Ring O L P LMod
27 26 3ad2ant1 N Fin R Ring O L i N j N P LMod
28 27 adantr N Fin R Ring O L i N j N k 0 P LMod
29 eqid Base R = Base R
30 eqid Base A = Base A
31 simpl2 N Fin R Ring O L i N j N k 0 i N
32 simpl3 N Fin R Ring O L i N j N k 0 j N
33 simpl13 N Fin R Ring O L i N j N k 0 O L
34 eqid coe 1 O = coe 1 O
35 34 3 2 30 coe1f O L coe 1 O : 0 Base A
36 33 35 syl N Fin R Ring O L i N j N k 0 coe 1 O : 0 Base A
37 simpr N Fin R Ring O L i N j N k 0 k 0
38 36 37 ffvelrnd N Fin R Ring O L i N j N k 0 coe 1 O k Base A
39 1 29 30 31 32 38 matecld N Fin R Ring O L i N j N k 0 i coe 1 O k j Base R
40 4 ply1sca R Ring R = Scalar P
41 40 eqcomd R Ring Scalar P = R
42 41 3ad2ant2 N Fin R Ring O L Scalar P = R
43 42 fveq2d N Fin R Ring O L Base Scalar P = Base R
44 43 3ad2ant1 N Fin R Ring O L i N j N Base Scalar P = Base R
45 44 adantr N Fin R Ring O L i N j N k 0 Base Scalar P = Base R
46 39 45 eleqtrrd N Fin R Ring O L i N j N k 0 i coe 1 O k j Base Scalar P
47 18 3ad2ant2 N Fin R Ring O L P Ring
48 eqid mulGrp P = mulGrp P
49 48 ringmgp P Ring mulGrp P Mnd
50 47 49 syl N Fin R Ring O L mulGrp P Mnd
51 50 3ad2ant1 N Fin R Ring O L i N j N mulGrp P Mnd
52 51 adantr N Fin R Ring O L i N j N k 0 mulGrp P Mnd
53 7 4 13 vr1cl R Ring Y Base P
54 53 3ad2ant2 N Fin R Ring O L Y Base P
55 54 3ad2ant1 N Fin R Ring O L i N j N Y Base P
56 55 adantr N Fin R Ring O L i N j N k 0 Y Base P
57 48 13 mgpbas Base P = Base mulGrp P
58 57 6 mulgnn0cl mulGrp P Mnd k 0 Y Base P k E Y Base P
59 52 37 56 58 syl3anc N Fin R Ring O L i N j N k 0 k E Y Base P
60 eqid Scalar P = Scalar P
61 eqid Base Scalar P = Base Scalar P
62 13 60 5 61 lmodvscl P LMod i coe 1 O k j Base Scalar P k E Y Base P i coe 1 O k j · ˙ k E Y Base P
63 28 46 59 62 syl3anc N Fin R Ring O L i N j N k 0 i coe 1 O k j · ˙ k E Y Base P
64 63 fmpttd N Fin R Ring O L i N j N k 0 i coe 1 O k j · ˙ k E Y : 0 Base P
65 1 2 3 4 5 6 7 mply1topmatcllem N Fin R Ring O L i N j N finSupp 0 P k 0 i coe 1 O k j · ˙ k E Y
66 13 17 22 24 64 65 gsumcl N Fin R Ring O L i N j N P k 0 i coe 1 O k j · ˙ k E Y Base P
67 9 13 10 14 16 66 matbas2d N Fin R Ring O L i N , j N P k 0 i coe 1 O k j · ˙ k E Y B
68 12 67 eqeltrd N Fin R Ring O L I O B