Step |
Hyp |
Ref |
Expression |
1 |
|
mply1topmat.a |
|
2 |
|
mply1topmat.q |
|
3 |
|
mply1topmat.l |
|
4 |
|
mply1topmat.p |
|
5 |
|
mply1topmat.m |
|
6 |
|
mply1topmat.e |
|
7 |
|
mply1topmat.y |
|
8 |
|
mply1topmat.i |
|
9 |
|
mply1topmatcl.c |
|
10 |
|
mply1topmatcl.b |
|
11 |
1 2 3 4 5 6 7 8
|
mply1topmatval |
|
12 |
11
|
3adant2 |
|
13 |
|
eqid |
|
14 |
|
simp1 |
|
15 |
4
|
fvexi |
|
16 |
15
|
a1i |
|
17 |
|
eqid |
|
18 |
4
|
ply1ring |
|
19 |
|
ringcmn |
|
20 |
18 19
|
syl |
|
21 |
20
|
3ad2ant2 |
|
22 |
21
|
3ad2ant1 |
|
23 |
|
nn0ex |
|
24 |
23
|
a1i |
|
25 |
4
|
ply1lmod |
|
26 |
25
|
3ad2ant2 |
|
27 |
26
|
3ad2ant1 |
|
28 |
27
|
adantr |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
|
simpl2 |
|
32 |
|
simpl3 |
|
33 |
|
simpl13 |
|
34 |
|
eqid |
|
35 |
34 3 2 30
|
coe1f |
|
36 |
33 35
|
syl |
|
37 |
|
simpr |
|
38 |
36 37
|
ffvelrnd |
|
39 |
1 29 30 31 32 38
|
matecld |
|
40 |
4
|
ply1sca |
|
41 |
40
|
eqcomd |
|
42 |
41
|
3ad2ant2 |
|
43 |
42
|
fveq2d |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
adantr |
|
46 |
39 45
|
eleqtrrd |
|
47 |
18
|
3ad2ant2 |
|
48 |
|
eqid |
|
49 |
48
|
ringmgp |
|
50 |
47 49
|
syl |
|
51 |
50
|
3ad2ant1 |
|
52 |
51
|
adantr |
|
53 |
7 4 13
|
vr1cl |
|
54 |
53
|
3ad2ant2 |
|
55 |
54
|
3ad2ant1 |
|
56 |
55
|
adantr |
|
57 |
48 13
|
mgpbas |
|
58 |
57 6
|
mulgnn0cl |
|
59 |
52 37 56 58
|
syl3anc |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
13 60 5 61
|
lmodvscl |
|
63 |
28 46 59 62
|
syl3anc |
|
64 |
63
|
fmpttd |
|
65 |
1 2 3 4 5 6 7
|
mply1topmatcllem |
|
66 |
13 17 22 24 64 65
|
gsumcl |
|
67 |
9 13 10 14 16 66
|
matbas2d |
|
68 |
12 67
|
eqeltrd |
|