Metamath Proof Explorer


Theorem mply1topmatval

Description: A polynomial over matrices transformed into a polynomial matrix. I is the inverse function of the transformation T of polynomial matrices into polynomials over matrices: ( T( IO ) ) = O ) (see mp2pm2mp ). (Contributed by AV, 6-Oct-2019)

Ref Expression
Hypotheses mply1topmat.a A = N Mat R
mply1topmat.q Q = Poly 1 A
mply1topmat.l L = Base Q
mply1topmat.p P = Poly 1 R
mply1topmat.m · ˙ = P
mply1topmat.e E = mulGrp P
mply1topmat.y Y = var 1 R
mply1topmat.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
Assertion mply1topmatval N V O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y

Proof

Step Hyp Ref Expression
1 mply1topmat.a A = N Mat R
2 mply1topmat.q Q = Poly 1 A
3 mply1topmat.l L = Base Q
4 mply1topmat.p P = Poly 1 R
5 mply1topmat.m · ˙ = P
6 mply1topmat.e E = mulGrp P
7 mply1topmat.y Y = var 1 R
8 mply1topmat.i I = p L i N , j N P k 0 i coe 1 p k j · ˙ k E Y
9 fveq2 p = O coe 1 p = coe 1 O
10 9 fveq1d p = O coe 1 p k = coe 1 O k
11 10 oveqd p = O i coe 1 p k j = i coe 1 O k j
12 11 oveq1d p = O i coe 1 p k j · ˙ k E Y = i coe 1 O k j · ˙ k E Y
13 12 mpteq2dv p = O k 0 i coe 1 p k j · ˙ k E Y = k 0 i coe 1 O k j · ˙ k E Y
14 13 oveq2d p = O P k 0 i coe 1 p k j · ˙ k E Y = P k 0 i coe 1 O k j · ˙ k E Y
15 14 mpoeq3dv p = O i N , j N P k 0 i coe 1 p k j · ˙ k E Y = i N , j N P k 0 i coe 1 O k j · ˙ k E Y
16 simpr N V O L O L
17 simpl N V O L N V
18 mpoexga N V N V i N , j N P k 0 i coe 1 O k j · ˙ k E Y V
19 17 18 syldan N V O L i N , j N P k 0 i coe 1 O k j · ˙ k E Y V
20 8 15 16 19 fvmptd3 N V O L I O = i N , j N P k 0 i coe 1 O k j · ˙ k E Y