Metamath Proof Explorer


Theorem mpo0

Description: A mapping operation with empty domain. In this version of mpo0v , the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion mpo0 x , y B C =

Proof

Step Hyp Ref Expression
1 df-mpo x , y B C = x y z | x y B z = C
2 df-oprab x y z | x y B z = C = w | x y z w = x y z x y B z = C
3 noel ¬ x
4 simprll w = x y z x y B z = C x
5 3 4 mto ¬ w = x y z x y B z = C
6 5 nex ¬ z w = x y z x y B z = C
7 6 nex ¬ y z w = x y z x y B z = C
8 7 nex ¬ x y z w = x y z x y B z = C
9 8 abf w | x y z w = x y z x y B z = C =
10 1 2 9 3eqtri x , y B C =