Metamath Proof Explorer


Theorem mpocnfldmul

Description: The multiplication operation of the field of complex numbers. Version of cnfldmul using maps-to notation, which does not require ax-mulf . (Contributed by GG, 31-Mar-2025)

Ref Expression
Assertion mpocnfldmul x , y x y = fld

Proof

Step Hyp Ref Expression
1 mpomulex x , y x y V
2 cnfldstr fld Struct 1 13
3 mulridx 𝑟 = Slot ndx
4 snsstp3 ndx x , y x y Base ndx + ndx x , y x + y ndx x , y x y
5 ssun1 Base ndx + ndx x , y x + y ndx x , y x y Base ndx + ndx x , y x + y ndx x , y x y * ndx *
6 ssun1 Base ndx + ndx x , y x + y ndx x , y x y * ndx * Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
7 df-cnfld fld = Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
8 6 7 sseqtrri Base ndx + ndx x , y x + y ndx x , y x y * ndx * fld
9 5 8 sstri Base ndx + ndx x , y x + y ndx x , y x y fld
10 4 9 sstri ndx x , y x y fld
11 2 3 10 strfv x , y x y V x , y x y = fld
12 1 11 ax-mp x , y x y = fld