Metamath Proof Explorer


Theorem mpodifsnif

Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)

Ref Expression
Assertion mpodifsnif i A X , j B if i = X C D = i A X , j B D

Proof

Step Hyp Ref Expression
1 eldifsnneq i A X ¬ i = X
2 1 adantr i A X j B ¬ i = X
3 2 iffalsed i A X j B if i = X C D = D
4 3 mpoeq3ia i A X , j B if i = X C D = i A X , j B D