Metamath Proof Explorer


Theorem mpoeq123

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013) (Revised by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion mpoeq123 A=DxAB=EyBC=FxA,yBC=xD,yEF

Proof

Step Hyp Ref Expression
1 nfv xA=D
2 nfra1 xxAB=EyBC=F
3 1 2 nfan xA=DxAB=EyBC=F
4 nfv yA=D
5 nfcv _yA
6 nfv yB=E
7 nfra1 yyBC=F
8 6 7 nfan yB=EyBC=F
9 5 8 nfralw yxAB=EyBC=F
10 4 9 nfan yA=DxAB=EyBC=F
11 nfv zA=DxAB=EyBC=F
12 rsp xAB=EyBC=FxAB=EyBC=F
13 rsp yBC=FyBC=F
14 eqeq2 C=Fz=Cz=F
15 13 14 syl6 yBC=FyBz=Cz=F
16 15 pm5.32d yBC=FyBz=CyBz=F
17 eleq2 B=EyByE
18 17 anbi1d B=EyBz=FyEz=F
19 16 18 sylan9bbr B=EyBC=FyBz=CyEz=F
20 12 19 syl6 xAB=EyBC=FxAyBz=CyEz=F
21 20 pm5.32d xAB=EyBC=FxAyBz=CxAyEz=F
22 eleq2 A=DxAxD
23 22 anbi1d A=DxAyEz=FxDyEz=F
24 21 23 sylan9bbr A=DxAB=EyBC=FxAyBz=CxDyEz=F
25 anass xAyBz=CxAyBz=C
26 anass xDyEz=FxDyEz=F
27 24 25 26 3bitr4g A=DxAB=EyBC=FxAyBz=CxDyEz=F
28 3 10 11 27 oprabbid A=DxAB=EyBC=Fxyz|xAyBz=C=xyz|xDyEz=F
29 df-mpo xA,yBC=xyz|xAyBz=C
30 df-mpo xD,yEF=xyz|xDyEz=F
31 28 29 30 3eqtr4g A=DxAB=EyBC=FxA,yBC=xD,yEF