Metamath Proof Explorer


Theorem mpoeq123dv

Description: An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011)

Ref Expression
Hypotheses mpoeq123dv.1 φ A = D
mpoeq123dv.2 φ B = E
mpoeq123dv.3 φ C = F
Assertion mpoeq123dv φ x A , y B C = x D , y E F

Proof

Step Hyp Ref Expression
1 mpoeq123dv.1 φ A = D
2 mpoeq123dv.2 φ B = E
3 mpoeq123dv.3 φ C = F
4 2 adantr φ x A B = E
5 3 adantr φ x A y B C = F
6 1 4 5 mpoeq123dva φ x A , y B C = x D , y E F