Metamath Proof Explorer


Theorem mpoeq123dva

Description: An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses mpoeq123dv.1 φ A = D
mpoeq123dva.2 φ x A B = E
mpoeq123dva.3 φ x A y B C = F
Assertion mpoeq123dva φ x A , y B C = x D , y E F

Proof

Step Hyp Ref Expression
1 mpoeq123dv.1 φ A = D
2 mpoeq123dva.2 φ x A B = E
3 mpoeq123dva.3 φ x A y B C = F
4 3 eqeq2d φ x A y B z = C z = F
5 4 pm5.32da φ x A y B z = C x A y B z = F
6 2 eleq2d φ x A y B y E
7 6 pm5.32da φ x A y B x A y E
8 1 eleq2d φ x A x D
9 8 anbi1d φ x A y E x D y E
10 7 9 bitrd φ x A y B x D y E
11 10 anbi1d φ x A y B z = F x D y E z = F
12 5 11 bitrd φ x A y B z = C x D y E z = F
13 12 oprabbidv φ x y z | x A y B z = C = x y z | x D y E z = F
14 df-mpo x A , y B C = x y z | x A y B z = C
15 df-mpo x D , y E F = x y z | x D y E z = F
16 13 14 15 3eqtr4g φ x A , y B C = x D , y E F