Metamath Proof Explorer


Theorem mpoeq123i

Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013)

Ref Expression
Hypotheses mpoeq123i.1 A = D
mpoeq123i.2 B = E
mpoeq123i.3 C = F
Assertion mpoeq123i x A , y B C = x D , y E F

Proof

Step Hyp Ref Expression
1 mpoeq123i.1 A = D
2 mpoeq123i.2 B = E
3 mpoeq123i.3 C = F
4 1 a1i A = D
5 2 a1i B = E
6 3 a1i C = F
7 4 5 6 mpoeq123dv x A , y B C = x D , y E F
8 7 mptru x A , y B C = x D , y E F