Metamath Proof Explorer


Theorem mpoeq3ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypothesis mpoeq3ia.1 x A y B C = D
Assertion mpoeq3ia x A , y B C = x A , y B D

Proof

Step Hyp Ref Expression
1 mpoeq3ia.1 x A y B C = D
2 1 3adant1 x A y B C = D
3 2 mpoeq3dva x A , y B C = x A , y B D
4 3 mptru x A , y B C = x A , y B D