Metamath Proof Explorer


Theorem mpoexg

Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypothesis mpoexg.1 F = x A , y B C
Assertion mpoexg A R B S F V

Proof

Step Hyp Ref Expression
1 mpoexg.1 F = x A , y B C
2 elex B S B V
3 elex B V B V
4 3 ralrimivw B V x A B V
5 2 4 syl B S x A B V
6 1 mpoexxg A R x A B V F V
7 5 6 sylan2 A R B S F V