Metamath Proof Explorer


Theorem mpoexw

Description: Weak version of mpoex that holds without ax-rep . If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023)

Ref Expression
Hypotheses mpoexw.1 A V
mpoexw.2 B V
mpoexw.3 D V
mpoexw.4 x A y B C D
Assertion mpoexw x A , y B C V

Proof

Step Hyp Ref Expression
1 mpoexw.1 A V
2 mpoexw.2 B V
3 mpoexw.3 D V
4 mpoexw.4 x A y B C D
5 eqid x A , y B C = x A , y B C
6 5 mpofun Fun x A , y B C
7 5 dmmpoga x A y B C D dom x A , y B C = A × B
8 4 7 ax-mp dom x A , y B C = A × B
9 1 2 xpex A × B V
10 8 9 eqeltri dom x A , y B C V
11 5 rnmpo ran x A , y B C = z | x A y B z = C
12 4 rspec x A y B C D
13 12 r19.21bi x A y B C D
14 eleq1a C D z = C z D
15 13 14 syl x A y B z = C z D
16 15 rexlimdva x A y B z = C z D
17 16 rexlimiv x A y B z = C z D
18 17 abssi z | x A y B z = C D
19 3 18 ssexi z | x A y B z = C V
20 11 19 eqeltri ran x A , y B C V
21 funexw Fun x A , y B C dom x A , y B C V ran x A , y B C V x A , y B C V
22 6 10 20 21 mp3an x A , y B C V