Metamath Proof Explorer


Theorem mpoexxg

Description: Existence of an operation class abstraction (version for dependent domains). (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypothesis mpoexg.1 F = x A , y B C
Assertion mpoexxg A R x A B S F V

Proof

Step Hyp Ref Expression
1 mpoexg.1 F = x A , y B C
2 1 mpofun Fun F
3 1 dmmpossx dom F x A x × B
4 snex x V
5 xpexg x V B S x × B V
6 4 5 mpan B S x × B V
7 6 ralimi x A B S x A x × B V
8 iunexg A R x A x × B V x A x × B V
9 7 8 sylan2 A R x A B S x A x × B V
10 ssexg dom F x A x × B x A x × B V dom F V
11 3 9 10 sylancr A R x A B S dom F V
12 funex Fun F dom F V F V
13 2 11 12 sylancr A R x A B S F V