Metamath Proof Explorer


Theorem mpofrlmd

Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses mpofrlmd.f F = R freeLMod N × M
mpofrlmd.v V = Base F
mpofrlmd.s i = a j = b A = B
mpofrlmd.a φ i N j M A X
mpofrlmd.b φ a N b M B Y
mpofrlmd.e φ N U M W Z V
Assertion mpofrlmd φ Z = a N , b M B i N j M i Z j = A

Proof

Step Hyp Ref Expression
1 mpofrlmd.f F = R freeLMod N × M
2 mpofrlmd.v V = Base F
3 mpofrlmd.s i = a j = b A = B
4 mpofrlmd.a φ i N j M A X
5 mpofrlmd.b φ a N b M B Y
6 mpofrlmd.e φ N U M W Z V
7 xpexg N U M W N × M V
8 7 anim1i N U M W Z V N × M V Z V
9 8 3impa N U M W Z V N × M V Z V
10 6 9 syl φ N × M V Z V
11 eqid Base R = Base R
12 1 11 2 frlmbasf N × M V Z V Z : N × M Base R
13 ffn Z : N × M Base R Z Fn N × M
14 10 12 13 3syl φ Z Fn N × M
15 14 3 4 5 fnmpoovd φ Z = a N , b M B i N j M i Z j = A