Metamath Proof Explorer


Theorem mpofunOLD

Description: Obsolete version of mpofun as of 23-Jul-2024. (Contributed by Scott Fenton, 21-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpofun.1 F=xA,yBC
Assertion mpofunOLD FunF

Proof

Step Hyp Ref Expression
1 mpofun.1 F=xA,yBC
2 eqtr3 z=Cw=Cz=w
3 2 ad2ant2l xAyBz=CxAyBw=Cz=w
4 3 gen2 zwxAyBz=CxAyBw=Cz=w
5 eqeq1 z=wz=Cw=C
6 5 anbi2d z=wxAyBz=CxAyBw=C
7 6 mo4 *zxAyBz=CzwxAyBz=CxAyBw=Cz=w
8 4 7 mpbir *zxAyBz=C
9 8 funoprab Funxyz|xAyBz=C
10 df-mpo xA,yBC=xyz|xAyBz=C
11 1 10 eqtri F=xyz|xAyBz=C
12 11 funeqi FunFFunxyz|xAyBz=C
13 9 12 mpbir FunF