Metamath Proof Explorer


Theorem mpofunOLD

Description: Obsolete version of mpofun as of 23-Jul-2024. (Contributed by Scott Fenton, 21-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis mpofun.1 F = x A , y B C
Assertion mpofunOLD Fun F

Proof

Step Hyp Ref Expression
1 mpofun.1 F = x A , y B C
2 eqtr3 z = C w = C z = w
3 2 ad2ant2l x A y B z = C x A y B w = C z = w
4 3 gen2 z w x A y B z = C x A y B w = C z = w
5 eqeq1 z = w z = C w = C
6 5 anbi2d z = w x A y B z = C x A y B w = C
7 6 mo4 * z x A y B z = C z w x A y B z = C x A y B w = C z = w
8 4 7 mpbir * z x A y B z = C
9 8 funoprab Fun x y z | x A y B z = C
10 df-mpo x A , y B C = x y z | x A y B z = C
11 1 10 eqtri F = x y z | x A y B z = C
12 11 funeqi Fun F Fun x y z | x A y B z = C
13 9 12 mpbir Fun F