Metamath Proof Explorer


Theorem mpompt

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis mpompt.1 z = x y C = D
Assertion mpompt z A × B C = x A , y B D

Proof

Step Hyp Ref Expression
1 mpompt.1 z = x y C = D
2 iunxpconst x A x × B = A × B
3 2 mpteq1i z x A x × B C = z A × B C
4 1 mpomptx z x A x × B C = x A , y B D
5 3 4 eqtr3i z A × B C = x A , y B D