Metamath Proof Explorer


Theorem mpompts

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015)

Ref Expression
Assertion mpompts x A , y B C = z A × B 1 st z / x 2 nd z / y C

Proof

Step Hyp Ref Expression
1 mpomptsx x A , y B C = z x A x × B 1 st z / x 2 nd z / y C
2 iunxpconst x A x × B = A × B
3 2 mpteq1i z x A x × B 1 st z / x 2 nd z / y C = z A × B 1 st z / x 2 nd z / y C
4 1 3 eqtri x A , y B C = z A × B 1 st z / x 2 nd z / y C