Metamath Proof Explorer


Theorem mpomptsx

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion mpomptsx x A , y B C = z x A x × B 1 st z / x 2 nd z / y C

Proof

Step Hyp Ref Expression
1 vex u V
2 vex v V
3 1 2 op1std z = u v 1 st z = u
4 3 csbeq1d z = u v 1 st z / x 2 nd z / y C = u / x 2 nd z / y C
5 1 2 op2ndd z = u v 2 nd z = v
6 5 csbeq1d z = u v 2 nd z / y C = v / y C
7 6 csbeq2dv z = u v u / x 2 nd z / y C = u / x v / y C
8 4 7 eqtrd z = u v 1 st z / x 2 nd z / y C = u / x v / y C
9 8 mpomptx z u A u × u / x B 1 st z / x 2 nd z / y C = u A , v u / x B u / x v / y C
10 nfcv _ u x × B
11 nfcv _ x u
12 nfcsb1v _ x u / x B
13 11 12 nfxp _ x u × u / x B
14 sneq x = u x = u
15 csbeq1a x = u B = u / x B
16 14 15 xpeq12d x = u x × B = u × u / x B
17 10 13 16 cbviun x A x × B = u A u × u / x B
18 17 mpteq1i z x A x × B 1 st z / x 2 nd z / y C = z u A u × u / x B 1 st z / x 2 nd z / y C
19 nfcv _ u B
20 nfcv _ u C
21 nfcv _ v C
22 nfcsb1v _ x u / x v / y C
23 nfcv _ y u
24 nfcsb1v _ y v / y C
25 23 24 nfcsbw _ y u / x v / y C
26 csbeq1a y = v C = v / y C
27 csbeq1a x = u v / y C = u / x v / y C
28 26 27 sylan9eqr x = u y = v C = u / x v / y C
29 19 12 20 21 22 25 15 28 cbvmpox x A , y B C = u A , v u / x B u / x v / y C
30 9 18 29 3eqtr4ri x A , y B C = z x A x × B 1 st z / x 2 nd z / y C