Metamath Proof Explorer


Theorem mpomulcn

Description: Complex number multiplication is a continuous function. Version of mulcn using maps-to notation, which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)

Ref Expression
Hypothesis mpomulcn.j J = TopOpen fld
Assertion mpomulcn x , y x y J × t J Cn J

Proof

Step Hyp Ref Expression
1 mpomulcn.j J = TopOpen fld
2 mpomulf x , y x y : ×
3 mulcn2 a + b c z + w + d e d b < z e c < w d e b c < a
4 simplr v u a + b c u
5 simplll v u a + b c d = u v
6 simplr v u a + b c d = u e = v d = u
7 6 fvoveq1d v u a + b c d = u e = v d b = u b
8 7 breq1d v u a + b c d = u e = v d b < z u b < z
9 simpr v u a + b c d = u e = v e = v
10 9 fvoveq1d v u a + b c d = u e = v e c = v c
11 10 breq1d v u a + b c d = u e = v e c < w v c < w
12 8 11 anbi12d v u a + b c d = u e = v d b < z e c < w u b < z v c < w
13 simplr v u d = u e = v d = u
14 13 eqcomd v u d = u e = v u = d
15 simpr v u d = u e = v e = v
16 15 eqcomd v u d = u e = v v = e
17 14 16 oveq12d v u d = u e = v u v = d e
18 simplr v u d = u u
19 simplll v u d = u e = v v
20 tru
21 oveq1 x = u x y = u y
22 oveq2 y = v u y = u v
23 21 22 cbvmpov x , y x y = u , v u v
24 23 a1i x , y x y = u , v u v
25 eqidd u v = u v
26 mulcl u v u v
27 26 3adant1 u v u v
28 24 25 27 fvmpopr2d u v x , y x y u v = u v
29 28 eqcomd u v u v = x , y x y u v
30 20 29 mp3an1 u v u v = x , y x y u v
31 df-ov u x , y x y v = x , y x y u v
32 30 31 eqtr4di u v u v = u x , y x y v
33 18 19 32 syl2an2r v u d = u e = v u v = u x , y x y v
34 17 33 eqtr3d v u d = u e = v d e = u x , y x y v
35 34 adantllr v u a + b c d = u e = v d e = u x , y x y v
36 df-ov b x , y x y c = x , y x y b c
37 oveq1 x = b x y = b y
38 oveq2 y = c b y = b c
39 37 38 cbvmpov x , y x y = b , c b c
40 39 a1i a + x , y x y = b , c b c
41 eqidd a + b c = b c
42 mulcl b c b c
43 42 3adant1 a + b c b c
44 40 41 43 fvmpopr2d a + b c x , y x y b c = b c
45 36 44 eqtr2id a + b c b c = b x , y x y c
46 45 ad3antlr v u a + b c d = u e = v b c = b x , y x y c
47 35 46 oveq12d v u a + b c d = u e = v d e b c = u x , y x y v b x , y x y c
48 47 fveq2d v u a + b c d = u e = v d e b c = u x , y x y v b x , y x y c
49 48 breq1d v u a + b c d = u e = v d e b c < a u x , y x y v b x , y x y c < a
50 12 49 imbi12d v u a + b c d = u e = v d b < z e c < w d e b c < a u b < z v c < w u x , y x y v b x , y x y c < a
51 5 50 rspcdv v u a + b c d = u e d b < z e c < w d e b c < a u b < z v c < w u x , y x y v b x , y x y c < a
52 4 51 rspcimdv v u a + b c d e d b < z e c < w d e b c < a u b < z v c < w u x , y x y v b x , y x y c < a
53 52 expimpd v u a + b c d e d b < z e c < w d e b c < a u b < z v c < w u x , y x y v b x , y x y c < a
54 53 ex v u a + b c d e d b < z e c < w d e b c < a u b < z v c < w u x , y x y v b x , y x y c < a
55 54 com13 a + b c d e d b < z e c < w d e b c < a u v u b < z v c < w u x , y x y v b x , y x y c < a
56 55 ralrimdv a + b c d e d b < z e c < w d e b c < a u v u b < z v c < w u x , y x y v b x , y x y c < a
57 56 ex a + b c d e d b < z e c < w d e b c < a u v u b < z v c < w u x , y x y v b x , y x y c < a
58 57 ralrimdv a + b c d e d b < z e c < w d e b c < a u v u b < z v c < w u x , y x y v b x , y x y c < a
59 58 reximdv a + b c w + d e d b < z e c < w d e b c < a w + u v u b < z v c < w u x , y x y v b x , y x y c < a
60 59 reximdv a + b c z + w + d e d b < z e c < w d e b c < a z + w + u v u b < z v c < w u x , y x y v b x , y x y c < a
61 3 60 mpd a + b c z + w + u v u b < z v c < w u x , y x y v b x , y x y c < a
62 1 2 61 addcnlem x , y x y J × t J Cn J