Metamath Proof Explorer


Theorem mpomulex

Description: The multiplication operation is a set. Version of mulex using maps-to notation , which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)

Ref Expression
Assertion mpomulex x , y x y V

Proof

Step Hyp Ref Expression
1 mpomulf x , y x y : ×
2 cnex V
3 2 2 xpex × V
4 fex2 x , y x y : × × V V x , y x y V
5 1 3 2 4 mp3an x , y x y V