Metamath Proof Explorer


Theorem mpondm0

Description: The value of an operation given by a maps-to rule is the empty set if the arguments are not contained in the base sets of the rule. (Contributed by Alexander van der Vekens, 12-Oct-2017)

Ref Expression
Hypothesis mpondm0.f F = x X , y Y C
Assertion mpondm0 ¬ V X W Y V F W =

Proof

Step Hyp Ref Expression
1 mpondm0.f F = x X , y Y C
2 df-mpo x X , y Y C = x y z | x X y Y z = C
3 1 2 eqtri F = x y z | x X y Y z = C
4 3 dmeqi dom F = dom x y z | x X y Y z = C
5 dmoprabss dom x y z | x X y Y z = C X × Y
6 4 5 eqsstri dom F X × Y
7 nssdmovg dom F X × Y ¬ V X W Y V F W =
8 6 7 mpan ¬ V X W Y V F W =