Metamath Proof Explorer


Theorem mposn

Description: An operation (in maps-to notation) on two singletons. (Contributed by AV, 4-Aug-2019)

Ref Expression
Hypotheses mposn.f F = x A , y B C
mposn.a x = A C = D
mposn.b y = B D = E
Assertion mposn A V B W E U F = A B E

Proof

Step Hyp Ref Expression
1 mposn.f F = x A , y B C
2 mposn.a x = A C = D
3 mposn.b y = B D = E
4 xpsng A V B W A × B = A B
5 4 3adant3 A V B W E U A × B = A B
6 5 mpteq1d A V B W E U p A × B 1 st p / x 2 nd p / y C = p A B 1 st p / x 2 nd p / y C
7 mpompts x A , y B C = p A × B 1 st p / x 2 nd p / y C
8 1 7 eqtri F = p A × B 1 st p / x 2 nd p / y C
9 8 a1i A V B W E U F = p A × B 1 st p / x 2 nd p / y C
10 op2ndg A V B W 2 nd A B = B
11 fveq2 p = A B 2 nd p = 2 nd A B
12 11 eqcomd p = A B 2 nd A B = 2 nd p
13 12 eqeq1d p = A B 2 nd A B = B 2 nd p = B
14 10 13 syl5ibcom A V B W p = A B 2 nd p = B
15 14 3adant3 A V B W E U p = A B 2 nd p = B
16 15 imp A V B W E U p = A B 2 nd p = B
17 op1stg A V B W 1 st A B = A
18 fveq2 p = A B 1 st p = 1 st A B
19 18 eqcomd p = A B 1 st A B = 1 st p
20 19 eqeq1d p = A B 1 st A B = A 1 st p = A
21 17 20 syl5ibcom A V B W p = A B 1 st p = A
22 21 3adant3 A V B W E U p = A B 1 st p = A
23 22 imp A V B W E U p = A B 1 st p = A
24 simp1 A V B W E U A V
25 simpl2 A V B W E U x = A B W
26 2 adantl A V B W E U x = A C = D
27 26 3 sylan9eq A V B W E U x = A y = B C = E
28 25 27 csbied A V B W E U x = A B / y C = E
29 24 28 csbied A V B W E U A / x B / y C = E
30 29 adantr A V B W E U p = A B A / x B / y C = E
31 csbeq1 1 st p = A 1 st p / x 2 nd p / y C = A / x 2 nd p / y C
32 31 eqeq1d 1 st p = A 1 st p / x 2 nd p / y C = E A / x 2 nd p / y C = E
33 32 adantl 2 nd p = B 1 st p = A 1 st p / x 2 nd p / y C = E A / x 2 nd p / y C = E
34 csbeq1 2 nd p = B 2 nd p / y C = B / y C
35 34 adantr 2 nd p = B 1 st p = A 2 nd p / y C = B / y C
36 35 csbeq2dv 2 nd p = B 1 st p = A A / x 2 nd p / y C = A / x B / y C
37 36 eqeq1d 2 nd p = B 1 st p = A A / x 2 nd p / y C = E A / x B / y C = E
38 33 37 bitrd 2 nd p = B 1 st p = A 1 st p / x 2 nd p / y C = E A / x B / y C = E
39 30 38 syl5ibrcom A V B W E U p = A B 2 nd p = B 1 st p = A 1 st p / x 2 nd p / y C = E
40 16 23 39 mp2and A V B W E U p = A B 1 st p / x 2 nd p / y C = E
41 opex A B V
42 41 a1i A V B W E U A B V
43 simp3 A V B W E U E U
44 40 42 43 fmptsnd A V B W E U A B E = p A B 1 st p / x 2 nd p / y C
45 6 9 44 3eqtr4d A V B W E U F = A B E