Metamath Proof Explorer


Theorem mposnif

Description: A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019)

Ref Expression
Assertion mposnif i X , j B if i = X C D = i X , j B C

Proof

Step Hyp Ref Expression
1 elsni i X i = X
2 1 adantr i X j B i = X
3 2 iftrued i X j B if i = X C D = C
4 3 mpoeq3ia i X , j B if i = X C D = i X , j B C