Metamath Proof Explorer


Theorem mpov

Description: Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013)

Ref Expression
Assertion mpov x V , y V C = x y z | z = C

Proof

Step Hyp Ref Expression
1 df-mpo x V , y V C = x y z | x V y V z = C
2 vex x V
3 vex y V
4 2 3 pm3.2i x V y V
5 4 biantrur z = C x V y V z = C
6 5 oprabbii x y z | z = C = x y z | x V y V z = C
7 1 6 eqtr4i x V , y V C = x y z | z = C