Metamath Proof Explorer


Theorem mpoxopoveq

Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens, 11-Oct-2017)

Ref Expression
Hypothesis mpoxopoveq.f F = x V , y 1 st x n 1 st x | φ
Assertion mpoxopoveq V X W Y K V V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f F = x V , y 1 st x n 1 st x | φ
2 1 a1i V X W Y K V F = x V , y 1 st x n 1 st x | φ
3 fveq2 x = V W 1 st x = 1 st V W
4 op1stg V X W Y 1 st V W = V
5 4 adantr V X W Y K V 1 st V W = V
6 3 5 sylan9eqr V X W Y K V x = V W 1 st x = V
7 6 adantrr V X W Y K V x = V W y = K 1 st x = V
8 sbceq1a y = K φ [˙K / y]˙ φ
9 8 adantl x = V W y = K φ [˙K / y]˙ φ
10 9 adantl V X W Y K V x = V W y = K φ [˙K / y]˙ φ
11 sbceq1a x = V W [˙K / y]˙ φ [˙ V W / x]˙ [˙K / y]˙ φ
12 11 adantr x = V W y = K [˙K / y]˙ φ [˙ V W / x]˙ [˙K / y]˙ φ
13 12 adantl V X W Y K V x = V W y = K [˙K / y]˙ φ [˙ V W / x]˙ [˙K / y]˙ φ
14 10 13 bitrd V X W Y K V x = V W y = K φ [˙ V W / x]˙ [˙K / y]˙ φ
15 7 14 rabeqbidv V X W Y K V x = V W y = K n 1 st x | φ = n V | [˙ V W / x]˙ [˙K / y]˙ φ
16 opex V W V
17 16 a1i V X W Y K V V W V
18 simpr V X W Y K V K V
19 rabexg V X n V | [˙ V W / x]˙ [˙K / y]˙ φ V
20 19 ad2antrr V X W Y K V n V | [˙ V W / x]˙ [˙K / y]˙ φ V
21 equid z = z
22 nfvd z = z x V X W Y K V
23 21 22 ax-mp x V X W Y K V
24 nfvd z = z y V X W Y K V
25 21 24 ax-mp y V X W Y K V
26 nfcv _ y V W
27 nfcv _ x K
28 nfsbc1v x [˙ V W / x]˙ [˙K / y]˙ φ
29 nfcv _ x V
30 28 29 nfrabw _ x n V | [˙ V W / x]˙ [˙K / y]˙ φ
31 nfsbc1v y [˙K / y]˙ φ
32 26 31 nfsbcw y [˙ V W / x]˙ [˙K / y]˙ φ
33 nfcv _ y V
34 32 33 nfrabw _ y n V | [˙ V W / x]˙ [˙K / y]˙ φ
35 2 15 6 17 18 20 23 25 26 27 30 34 ovmpodxf V X W Y K V V W F K = n V | [˙ V W / x]˙ [˙K / y]˙ φ