Metamath Proof Explorer


Theorem mpoxopx0ov0

Description: If the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, is the empty set, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017)

Ref Expression
Hypothesis mpoxopn0yelv.f F = x V , y 1 st x C
Assertion mpoxopx0ov0 F K =

Proof

Step Hyp Ref Expression
1 mpoxopn0yelv.f F = x V , y 1 st x C
2 0nelxp ¬ V × V
3 1 mpoxopxnop0 ¬ V × V F K =
4 2 3 ax-mp F K =