Metamath Proof Explorer


Theorem mpoxopynvov0

Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017)

Ref Expression
Hypothesis mpoxopn0yelv.f F = x V , y 1 st x C
Assertion mpoxopynvov0 K V V W F K =

Proof

Step Hyp Ref Expression
1 mpoxopn0yelv.f F = x V , y 1 st x C
2 1 mpoxopynvov0g V V W V K V V W F K =
3 2 ex V V W V K V V W F K =
4 1 mpoxopxprcov0 ¬ V V W V V W F K =
5 4 a1d ¬ V V W V K V V W F K =
6 3 5 pm2.61i K V V W F K =