Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)
|
|
Ref |
Expression |
|
Hypotheses |
mpsyl4anc.1 |
|
|
|
mpsyl4anc.2 |
|
|
|
mpsyl4anc.3 |
|
|
|
mpsyl4anc.4 |
|
|
|
mpsyl4anc.5 |
|
|
Assertion |
mpsyl4anc |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpsyl4anc.1 |
|
2 |
|
mpsyl4anc.2 |
|
3 |
|
mpsyl4anc.3 |
|
4 |
|
mpsyl4anc.4 |
|
5 |
|
mpsyl4anc.5 |
|
6 |
1
|
a1i |
|
7 |
2
|
a1i |
|
8 |
3
|
a1i |
|
9 |
6 7 8 4 5
|
syl1111anc |
|