Metamath Proof Explorer


Theorem mpsyl4anc

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses mpsyl4anc.1 φ
mpsyl4anc.2 ψ
mpsyl4anc.3 χ
mpsyl4anc.4 θ τ
mpsyl4anc.5 φ ψ χ τ η
Assertion mpsyl4anc θ η

Proof

Step Hyp Ref Expression
1 mpsyl4anc.1 φ
2 mpsyl4anc.2 ψ
3 mpsyl4anc.3 χ
4 mpsyl4anc.4 θ τ
5 mpsyl4anc.5 φ ψ χ τ η
6 1 a1i θ φ
7 2 a1i θ ψ
8 3 a1i θ χ
9 6 7 8 4 5 syl1111anc θ η