Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
mpt0
Next ⟩
fnmpti
Metamath Proof Explorer
Ascii
Unicode
Theorem
mpt0
Description:
A mapping operation with empty domain.
(Contributed by
Mario Carneiro
, 28-Dec-2014)
Ref
Expression
Assertion
mpt0
⊢
x
∈
∅
⟼
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
ral0
⊢
∀
x
∈
∅
A
∈
V
2
eqid
⊢
x
∈
∅
⟼
A
=
x
∈
∅
⟼
A
3
2
fnmpt
⊢
∀
x
∈
∅
A
∈
V
→
x
∈
∅
⟼
A
Fn
∅
4
1
3
ax-mp
⊢
x
∈
∅
⟼
A
Fn
∅
5
fn0
⊢
x
∈
∅
⟼
A
Fn
∅
↔
x
∈
∅
⟼
A
=
∅
6
4
5
mpbi
⊢
x
∈
∅
⟼
A
=
∅