Metamath Proof Explorer


Theorem mptcnfimad

Description: The converse of a mapping of subsets to their image of a bijection. (Contributed by AV, 23-Apr-2025)

Ref Expression
Hypotheses mptcnfimad.m M = x A F x
mptcnfimad.f φ F : V 1-1 onto W
mptcnfimad.a φ A 𝒫 V
mptcnfimad.r φ ran M 𝒫 W
mptcnfimad.v φ V U
Assertion mptcnfimad φ M -1 = y ran M F -1 y

Proof

Step Hyp Ref Expression
1 mptcnfimad.m M = x A F x
2 mptcnfimad.f φ F : V 1-1 onto W
3 mptcnfimad.a φ A 𝒫 V
4 mptcnfimad.r φ ran M 𝒫 W
5 mptcnfimad.v φ V U
6 1 cnveqi M -1 = x A F x -1
7 simpr φ x A x A
8 f1of F : V 1-1 onto W F : V W
9 2 8 syl φ F : V W
10 9 5 fexd φ F V
11 10 imaexd φ F x V
12 11 adantr φ x A F x V
13 1 7 12 elrnmpt1d φ x A F x ran M
14 f1of1 F : V 1-1 onto W F : V 1-1 W
15 2 14 syl φ F : V 1-1 W
16 ssel A 𝒫 V x A x 𝒫 V
17 elpwi x 𝒫 V x V
18 16 17 syl6 A 𝒫 V x A x V
19 3 18 syl φ x A x V
20 19 imp φ x A x V
21 f1imacnv F : V 1-1 W x V F -1 F x = x
22 21 eqcomd F : V 1-1 W x V x = F -1 F x
23 15 20 22 syl2an2r φ x A x = F -1 F x
24 13 23 jca φ x A F x ran M x = F -1 F x
25 eleq1 y = F x y ran M F x ran M
26 imaeq2 y = F x F -1 y = F -1 F x
27 26 eqeq2d y = F x x = F -1 y x = F -1 F x
28 25 27 anbi12d y = F x y ran M x = F -1 y F x ran M x = F -1 F x
29 24 28 syl5ibrcom φ x A y = F x y ran M x = F -1 y
30 29 expimpd φ x A y = F x y ran M x = F -1 y
31 12 ralrimiva φ x A F x V
32 1 fnmpt x A F x V M Fn A
33 31 32 syl φ M Fn A
34 fvelrnb M Fn A y ran M x A M x = y
35 33 34 syl φ y ran M x A M x = y
36 imaeq2 x = z F x = F z
37 36 cbvmptv x A F x = z A F z
38 1 37 eqtri M = z A F z
39 38 a1i φ x A M = z A F z
40 simpr φ x A z = x z = x
41 40 imaeq2d φ x A z = x F z = F x
42 39 41 7 12 fvmptd φ x A M x = F x
43 42 eqeq1d φ x A M x = y F x = y
44 26 eqcoms F x = y F -1 y = F -1 F x
45 44 adantl φ x A F x = y F -1 y = F -1 F x
46 15 20 21 syl2an2r φ x A F -1 F x = x
47 46 7 eqeltrd φ x A F -1 F x A
48 47 adantr φ x A F x = y F -1 F x A
49 45 48 eqeltrd φ x A F x = y F -1 y A
50 49 ex φ x A F x = y F -1 y A
51 43 50 sylbid φ x A M x = y F -1 y A
52 51 rexlimdva φ x A M x = y F -1 y A
53 35 52 sylbid φ y ran M F -1 y A
54 53 imp φ y ran M F -1 y A
55 f1ofo F : V 1-1 onto W F : V onto W
56 2 55 syl φ F : V onto W
57 ssel ran M 𝒫 W y ran M y 𝒫 W
58 elpwi y 𝒫 W y W
59 57 58 syl6 ran M 𝒫 W y ran M y W
60 4 59 syl φ y ran M y W
61 60 imp φ y ran M y W
62 foimacnv F : V onto W y W F F -1 y = y
63 56 61 62 syl2an2r φ y ran M F F -1 y = y
64 63 eqcomd φ y ran M y = F F -1 y
65 54 64 jca φ y ran M F -1 y A y = F F -1 y
66 eleq1 x = F -1 y x A F -1 y A
67 imaeq2 x = F -1 y F x = F F -1 y
68 67 eqeq2d x = F -1 y y = F x y = F F -1 y
69 66 68 anbi12d x = F -1 y x A y = F x F -1 y A y = F F -1 y
70 65 69 syl5ibrcom φ y ran M x = F -1 y x A y = F x
71 70 expimpd φ y ran M x = F -1 y x A y = F x
72 30 71 impbid φ x A y = F x y ran M x = F -1 y
73 72 mptcnv φ x A F x -1 = y ran M F -1 y
74 6 73 eqtrid φ M -1 = y ran M F -1 y