Step |
Hyp |
Ref |
Expression |
1 |
|
mptcnfimad.m |
|
2 |
|
mptcnfimad.f |
|
3 |
|
mptcnfimad.a |
|
4 |
|
mptcnfimad.r |
|
5 |
|
mptcnfimad.v |
|
6 |
1
|
cnveqi |
|
7 |
|
simpr |
|
8 |
|
f1of |
|
9 |
2 8
|
syl |
|
10 |
9 5
|
fexd |
|
11 |
10
|
imaexd |
|
12 |
11
|
adantr |
|
13 |
1 7 12
|
elrnmpt1d |
|
14 |
|
f1of1 |
|
15 |
2 14
|
syl |
|
16 |
|
ssel |
|
17 |
|
elpwi |
|
18 |
16 17
|
syl6 |
|
19 |
3 18
|
syl |
|
20 |
19
|
imp |
|
21 |
|
f1imacnv |
|
22 |
21
|
eqcomd |
|
23 |
15 20 22
|
syl2an2r |
|
24 |
13 23
|
jca |
|
25 |
|
eleq1 |
|
26 |
|
imaeq2 |
|
27 |
26
|
eqeq2d |
|
28 |
25 27
|
anbi12d |
|
29 |
24 28
|
syl5ibrcom |
|
30 |
29
|
expimpd |
|
31 |
12
|
ralrimiva |
|
32 |
1
|
fnmpt |
|
33 |
31 32
|
syl |
|
34 |
|
fvelrnb |
|
35 |
33 34
|
syl |
|
36 |
|
imaeq2 |
|
37 |
36
|
cbvmptv |
|
38 |
1 37
|
eqtri |
|
39 |
38
|
a1i |
|
40 |
|
simpr |
|
41 |
40
|
imaeq2d |
|
42 |
39 41 7 12
|
fvmptd |
|
43 |
42
|
eqeq1d |
|
44 |
26
|
eqcoms |
|
45 |
44
|
adantl |
|
46 |
15 20 21
|
syl2an2r |
|
47 |
46 7
|
eqeltrd |
|
48 |
47
|
adantr |
|
49 |
45 48
|
eqeltrd |
|
50 |
49
|
ex |
|
51 |
43 50
|
sylbid |
|
52 |
51
|
rexlimdva |
|
53 |
35 52
|
sylbid |
|
54 |
53
|
imp |
|
55 |
|
f1ofo |
|
56 |
2 55
|
syl |
|
57 |
|
ssel |
|
58 |
|
elpwi |
|
59 |
57 58
|
syl6 |
|
60 |
4 59
|
syl |
|
61 |
60
|
imp |
|
62 |
|
foimacnv |
|
63 |
56 61 62
|
syl2an2r |
|
64 |
63
|
eqcomd |
|
65 |
54 64
|
jca |
|
66 |
|
eleq1 |
|
67 |
|
imaeq2 |
|
68 |
67
|
eqeq2d |
|
69 |
66 68
|
anbi12d |
|
70 |
65 69
|
syl5ibrcom |
|
71 |
70
|
expimpd |
|
72 |
30 71
|
impbid |
|
73 |
72
|
mptcnv |
|
74 |
6 73
|
eqtrid |
|